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Abstract

In this talk, we will make a survey of the recent work on the
characterization of some of the topological properties using
neighbourhood assignments. We also present some classes of
functions which are defined using neighbourhood assignments.

Dewi Kartika Sari Structures defined by Neighbourhood assignments



5

Neighbourhood assignment
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Neighbourhood Assignment

Let (X , d) be a metric space
and x ∈ X . Define:

B = {B(x , r) : x ∈ X and r > 0},

Example

Let X = R be equipped with
the Euclidean metric and r > 0.
The mapping define below is a
neighbourhood assignment on
X .

δ(x) = (x − r , x + r), x ∈ X .

Let (X , τ) be a topological
space. A neighbourhood
assignment on (X , τ) is a
function δ : X → τ such that
x ∈ δ(x) for each x ∈ X .

Denote the collection of all
neighbourhood assignments on
X by ∆(X ).

Example

Let X = R be equipped with
the co-countable topology
τco−count .Define an assignment
δ : X → τco−count by letting
δ(x) = (R− N) ∪ {x} for all
x ∈ X . Then δ ∈ ∆(X ).
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(1) D-Space

Definition

A space X is called compact if and only if for any δ ∈ ∆(X ) there
is a finite subset Y ⊆ X such that⋃

{δ(x) : x ∈ Y } = X .

If we substitute ”closed discrete” for ”finite” then we obtain the
definition of the class of D-spaces (Van Douwen-1977).
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Properties of D-space

D-Space but not Compact

Standard Euclidean space R is a D-space but not compact.

Theorem

1. Every T1 compact space/σ-compact space is a D-space.
2. Every countably compact D-space is compact.
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(2) Gauge Compact space (Zhao-2005)

Definition

A topological space X is called gauge compact if for any
δ ∈ ∆(X ), there is a finite set A ⊆ X such that for any x ∈ X
there is a ∈ A such that x ∈ δ(a) or a ∈ δ(x).

Example Gauge compact

Let X = N be the set of all positive integers. A set U is open in X
if and only if U = ∅ or U contains 1.
Obviously, X is not compact.
Now, let δ ∈ ∆(X ). Then every x ∈ X , 1 ∈ δ(x). Thus, X is
gauge compact.
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(3) Gauge Compact Index

Definition

Let X be a topological space. The gauge compact index of X ,
denoted by GCI (X ) , is defined as

GCI (X ) = inf{β : ∀δ ∈ ∆(X ),∃A ⊆ X so that |A| < β∧X ≺M
δ A},

where β is a cardinal number and |A| is the cardinality of set A.

Example

Let X = N be the set of all positive integers. A set U is open in X
if and only if U = ∅ or U contains 1. Since every x ∈ X , 1 ∈ δ(x).
Thus, GCI (X ) = 2.
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Properties

Properties of gauge compact

1. Every Tychonoff gauge compact space is compact.
2. Every gauge compact Hausdorff space is countably
compact/star compact.

Properties of GCI

1. Let n > 1 and X be a Hausdorff space. Then GCI (X ) = n iff
|X | = n − 1.
2. For any T1 space X , GCI (X ) = 2 iff |X | = 1.
4. Let X be a T1 space with |X | > 2. If GCI (X ) = 3 then X is
hyperconnected.
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Relation between gauge compact with other compactness
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Definition

1. A function f : X → Y between two topological spaces is of
Baire class one if there is a sequence {fn} of continuous functions
fn : X → Y such that f (x) = limn→∞ fn(x) holds for every x.

2. A function f : X → Z from a topological space X to a metric
space (Z , d) is weakly separated if for any ε > 0, there is a
δ ∈ ∆(X ) such that

d(f (x), f (y)) < ε whenever (x , y) ∈ δ(y)× δ(x).

3. A function f : X → Y between two topological spaces has the
point of continuity property (PCP) if the restriction of f to any
non-empty closed set of X has a point of continuity. (A.
Bouziad-2012)
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Properties (Lee, Tang, Zhao-2001)

Theorem

Let f : X → Y be a function from two Polish spaces. Then the
following are equivalent:
(1) f is Baire class one.
(2) f is weakly separated.
(3) f has PCP.

Question (A. Bouziad-2012)

Does every weakly separated function f : X ⇒ (Y , d) from a
compact space X to a metric space (Y , d) have a point of
continuity?
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Example

Let X = (N, τcof ) be the set of all natural numbers with the
co-finite topology τcof .
(1) X is compact.
(2) Let f : X ⇒ R be the function such that

f (2k) = 0 and f (2k − 1) = 1, k = 1, 2, · · · .

Then f does not have a point of continuity.
But f is weakly separated: Let δ ∈ ∆(X ) be defined by

δ(1) = X , δ(n) = X − {1, ..., n − 1}

Then for any ε > 0, (m, n) ∈ δ(n)× δ(m) implies m = n, so
trivially d(f (m), f (n)) = 0 < ε.
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