

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp Email : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module Name	Mathematical Modelling and Computation
Module level, if applicable	Doctoral Program
Code, if applicable	MMM-7318
Subtitle, if applicable	
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)
Person responsible for the module	Chair of the Lab. of Applied Mathematics
Lecturer(s)	Lecturer appointed by the Lab. of Applied Mathematics
Language	Bahasa Indonesia
Relation to curriculum	Compulsory / Elective / Specialisation
	Names of other study programmes with which the module is shared: -
Teaching methods	lecture, discussion, presentation, Project-based learning, case-based learning
Workload (incl. contact hours, self-study hours)	- Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Before taking this course, the students must have a good understanding of fundamental concepts in mathematics related to the research topic.

Module objectives/intended	After completing this course, the students should have ability to:			
learning outcomes	CO 1. classify the mathematical model related to the research topic.			
	CO 2. combine theories in mathematics and related disciplines to understand and solve a simple problem related to the research being carried out.			
	CO 3. interpret the mathematical results to the real problems related to the research being carried out.			
Content	Deterministic models:			
	discrete, exponential, and logistic population growth models, spring and pendulum oscillations, compartmental models, model fitting, interpretation.			
	Probabilistic models:			
	Review on probability theory and statistics (random variables, density functions, estimation), some examples in probabilistic models, parameter estimation, model fitting, interpretation			
	Stochastic models:			
	Review on stochastic processes (random variables, Markov chain, simulation), some examples in stochastic models, simulation, interpretation			
Examination forms	Presentation, Written Report			
Study and examination requirements	To pass the course, students are expected to get a minimum grade of B. The final mark will be weighted as follows:			
	No Assessment methods Weight (percentage)			
	1. Project: Discussion and presentation 60			
	2. Project: Written Report40			
Media employed	Boards, projectors, Laptop/Computer			
Reading list	 Haberman, R., 1977, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow. Prentice-Hall, Inc., Englewood Cliffs. Illner, R., Bohun, C.S., McCollum, S., and van Roode, T., 2005, Mathematical modeling: a case studies approach, American Mathematical Society 			

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1						
CO 2	\checkmark					
CO 3						

Last Modified Date : 10 August 2022

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Mathematical Modeling
Code, if applicable	MMM 7318
Subtitle, if applicable	Dynamical Systems
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)
Person responsible for the module	Chair of the Lab. of Applied Mathematics.
Language	Bahasa Indonesia (or English, if necessary)
Relation to curriculum	Compulsory / Elective / Specialisation Names of other study programmes with which the module is shared: -
Teaching methods	Project-based learning, case-based learning
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Before taking this course, the students must have a good understanding of fundamental concepts in mathematics, especially Ordinary Differential Equations related to the research topic.

Module objectives/intended	After completing this course, the students should have ability to:				
learning outcomes	CO1. develop knowledge of Linear and Nonlinear Dynamical Systems to the research problems.				
	CO2. implement the concepts of invariant structures and bifurcations to analyze and solve the problems.				
	CO3. interpret the solutions of the dynamical system in geometrical point of view based on the research problems.				
Content	a. Linear Dynamical System and Nonlinear Dynamical Systems (general solution, stability of an equilibrium point and a fixed point).				
	b. Formal Definitions of Dynamical System				
	c. Global stability of an equilibrium point (First Integral and Lyapunov Function)				
	<i>d.</i> Invariant structures (global stability of an equilibrium point, periodic solution and periodic point, and invariant manifolds)				
	e. Bifurcation on continuous and discrete systems				
	f. Some applications of Dynamical System.				
Examination forms	Presentation, Written Report				
Study and examination requirements	To pass the course, students are expected to get a minimum grade of B. The final mark will be weighted as follows:				
	No Assessment methods Weight (percentage)				
	1. Project: Discussion and presentation60				
	2. Project: Written Report40				
Reading list	1. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2 nd Ed., Springer- Verlag New York, Inc, 2003				
	2. Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag Berlin Heidelberg, 1996.				
	3. Kuznetsov, Y., <i>Elements of Applied Bifurcation Theory</i> , 2nd ed, Applied Mathematical Sciences 112, Springer-Verlag New York, Inc, 1998				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1						
CO 2						
CO 3						

Last Modified Date : 11 September 2023

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

	Mathematical Madelling			
Module designation	Mathematical Modelling			
Code, if applicable	MMM 7318			
Subtitle, if applicable	Advance Mathematical Modelling			
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)			
Person responsible for the module	Chair of the Lab. of Applied Mathematics			
Language	Bahasa Indonesia			
Relation to curriculum	Compulsory / Elective / Specialisation			
	Names of other study programmes with which the module is shared: -			
Teaching methods	project based learning, case based learning			
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.			
Credit points in Credit Units	3			
Required and recommended prerequisites for joining the module	Before taking this course, the students must have a good understanding of fundamental concepts in mathematics related to the research topic.			
Module objectives/intended	After completing this course, the students should have ability to:			
learning outcomes	CO 1. classify the mathematical model related to the research topic.			
	CO 2. combine theories in mathematics and related disciplines to understand and solve a simple problem related to the research being carried out.			
	CO 3. interpret the mathematical results to the real problems related to the research being carried out.			

Content	Deterministic models:				
	discrete, exponential, and logistic population growth models, spring and pendulum oscillations, compartmental models, model fitting, interpretation.				
	Probabilistic models:				
	Review on probability theory and statistics (random variables, density functions, estimation), some examples in probabilistic models, parameter estimation, model fitting, interpretation				
	Stochastic models:				
	Review on stochastic processes (random variables, Markov chain, simulation), some examples in stochastic models, simulation, interpretation				
Examination forms	Presentation, Written Report				
Study and examination requirements	To pass the course, students are expected to get a minimum grade of B. The final mark will be weighted as follows:				
	No Assessment methods Weight (percentage)				
	1. Project: Discussion and presentation60				
	2. Project: Written Report40				
Reading list	 Haberman, R., 1977, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow. Prentice- Hall, Inc., Englewood Cliffs. Illner, R., Bohun, C.S., McCollum, S., and van Roode, T., 2005, Mathematical modeling: a case studies approach, American Mathematical Society 				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	\checkmark	\checkmark				
CO 2	\checkmark	\checkmark	\checkmark			
CO 3	\checkmark					

Last Modified Date: 1 September 2023

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp Email : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Mathematical Modelling
Code, if applicable	MMM-7318
Subtitle, if applicable	Advanced Biomathematics (Bio-Matematika Lanjut)
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)
Person responsible for the module	Chair of the Lab. of Applied Mathematics
Language	Bahasa Indonesia
Relation to curriculum	Elective
Teaching methods	Lecture, classroom discussion, Presentation, project-based learning learning
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Before taking this course, students should have been familiar with Mathematical Modeling in Differential Equations.
Module objectives/intended learning outcomes	 After completing this course, the students should have ability to: CO 1. Create preliminary models of problems related to the topic of the dissertation CO 2. Overcome the preliminary models and prepare a manuscript for publication.

Content	Introduction: SIR, SIRS, SEIR model. Stability of Equilibrium Point and Linearization method. Direct Methods: Lyapunov Function, La Salle Theorem. First Integral. Basic Reproduction Number. Global Stability. Additional qualitative theories and methods which are necessary to overcome problems related to the topic dissertation. Project: Create and overcome preliminary models of problem related to the dissertation topic, a manuscript for publication				
Examination forms	Presentation, Written Report				
Study and examination requirements	To pass the course, students are expected to get a minimum grade of B.The final mark will be weighted as follows:No Assessment methodsWeight(components, activities)(percentage)1 Final Examination (Manuscript)40%2 Examination (report)30%3 Other Activities: Oral Presentation30%				
Reading list	 Braurer F. and Castillo-Chavez C., 2012, Mathematical Models in Population Biology and Epidemiology, Second Edition, Springer Science+Business Media, LLC, New York. Castillo-Chavez C., Feng Z., and Huang W., 2002, On the Computation of R0 and Its Role on Global Stability, Mathematical Approaches for Emerging and Reemerging Infections Diseases: Models, Methods and Theory, Volume I, Springer-Verlag, New York. Diekmann, O., and Heesterbeek, J. A. P., 2002, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, New York. Korobeinikov, A., and Maini, P. K., 2004, A Lyapunov Function and Global Properties for SIR and SEIR Epidemiological Models with Non-Linear Incidence, Mathematical Biosciences and Engineering, Volume I, Number1, June 2004. Murray J. D., 1993, Mathematical Biology, Springer-Verlag, Berlin. Perko L., 1991, Differential Equations and Dynamical Systems, Springer-Verlag, New York. Other textbooks or articles related to the topic of the dissertation. 				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	\checkmark					
CO 2						

Last Modified Date: 4 September 2023