

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

: +62 274 552243 Telp

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module Name	Topics in Functional Analysis		
Module level, if applicable	Doctor		
Code, if applicable	MMM-7107		
Subtitle, if applicable	-		
Semester(s) in which the module is taught	1 st or 2 nd semester		
Person responsible for the module	Chair of the Lab. Of Analysis		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree		
Teaching methods	Lecture, classroom discussion, flipped classroom.		
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.		
Credit points in Credit Units	3		
Required and recommended prerequisites for joining the module	Students have strong knowledge on abstract analysis and on theory in algebra, especially vector space, linear independence set, and orthonormal basis.		
Module objectives/intended	After completing this course, the students should have the ability to:		
learning outcomes	CO 1 integrate one or more theories in functional analysis for the development in developing and solving problems with functional analysis approach		
	CO 2 justify properties which are important in mathematical analysis research		

Content	 General functional analysis: Hilbert spaces, normed spaces, Riesz representation theorem, bilinear and sesquilinear mappings, adjoint, and spectral theorem. Fuzzy functional analysis: fuzzy number and its characteristics, inequality, fuzzy Banach space or fuzzy metric space, continuous t- norms, open mapping theorem. Operator theory: Preview on Hilbert spaces. Linear operator and adjoints: basic notion, bounded linear operators/functionals, isometry and isomorphism, adjoint operators, Banach-Steinhaus' Theorem, Strong and Weak convergent, projections. Closed linear operators: closed and closable operators, Closed Graph Theorem. Theory of Spectral, symmetry and self-adjoint operators, normal operators.
Examination forms	Oral presentation, essay.
Study and examination requirements	The final mark will be weighted as follows: Assessment methods Weight No (components, activites) (percentage) 1 Final Examination : final 30-40% project/presentation/oral exam/essay 2 Mid-Term Examination : presentation/oral 30-40% 2 Mid-Term Examination : presentation/oral 30-40% exam/essay 3 Class Activities: presentation, quiz, homework, 20-30% etc. To pass the course, students are expected to get a minimum grade of B.
Media employed	Board, LCD Projector, Laptop/Computer
Reading list	 Berberian, S.K., 1999, Introduction to Hilbert space Vol. 287. American Mathematical Soc. Kreyszig, E., 1991. Introductory Functional Analysis with Applications (Vol. 17). John Wiley & Sons. Bachman, G. and Narici, L., 1998, Functional Analysis 2nd Edition, Dover Publications. R. Saadati and S. M. Vaezpour, 2005, Some Results on Fuzzy Banach Spaces, J. Appl. Math. & Computing Vol. 17(2005), No. 1 - 2, pp. 475 - 484 Weidmann, J., 1980, Linear Operators in Hilbert Spaces, Springer- Verlag, New York. Conway, J.B., 2019, A Course in Functional Analysis 3rd Ediiton, Springer Verlag, New York. Taylor, A.E., 1980, Introduction to Functional Analysis, John Wiley and Sons, New York.

PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
-------	-------	-------	-------	-------	-------

CO 1	v	v	v	v	v
CO 2	v	v	v	v	v

Last Modified Date : 08 August 2022

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in MathematicsTelp: +62 274 552243Email: maths3@ugm.ac.id; kaprodi-s3-mater

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Functional Analysis
Code, if applicable	MMM-7107
Subtitle, if applicable	Functional Analysis
Semester(s) in which the module is taught	1 st or 2 nd semester
Person responsible for the module	Chair of the Lab. of Analysis
Language	Bahasa Indonesia
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree
Teaching methods	Lecture, classroom discussion, flipped classroom.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students have strong knowledge of abstract analysis and algebra theory, especially vector space, linear independence set, and orthonormal basis.
Module objectives/intended learning outcomes	 After completing this course, the students should have the ability to: CO 1 integrate one or more theories in functional analysis for the development in developing and solving problems with functional analysis approach CO 2 justify properties that are important in mathematical analysis research

Content	 Banach space: definition of Banach space, continuous linear mapping and its norm, dual space. Hilbert space: definition of Hilbert space, orthonormal basis, separable space, Riesz representation theorem. Operators in Hilbert space: bilinear and sesquilinear mappings, adjoint of an operator, some types of operators (adjoint operator, projection operator, isometric operator, unitary operator, normal operator), invariant and reducing space. Spectral Theorem: proper value, approximate proper value, cc- operator, spectral theorem of normal operator. 	
Examination forms	e.g. report, manuscript, oral presentation, essay, etc.	
Study and examination requirements	The final mark will be weighted as follows:Assessment methodsWeightNo(components, activities)(percentage)1Final Examination: final30-40%project/presentation/oral exam/essay30-40%2Mid-Term Examination: presentation/oral30-40%apresentation20-30%To pass the course, the minimum grade is B.B.	
Reading list	 Berberian, S.K., 1999, Introduction to Hilbert space Vol. 287. American Mathematical Soc. Kreyszig, E., 1991. Introductory Functional Analysis with Applications (Vol. 17). John Wiley & amp; Sons. Bachman, G. and Narici, L., 1998, Functional Analysis 2 nd Edition, Dover Publications. 	

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v	v		V	V
CO 2	v	v	v		v	V

Last Modified Date : September 3, 2023

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in MathematicsTelp: +62 274 552243Email: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.idWebsite: http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Functional Analysis		
Code, if applicable	MMM-7107		
Subtitle, if applicable	Operator Theory		
Semester(s) in which the module is taught	1 st or 2 nd semester		
Person responsible for the module	Chair of the Lab. Of Analysis		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree		
Teaching methods	Lecture, classroom discussion, flipped classroom.		
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.		
Credit points in Credit Units	3		
Required and recommended prerequisites for joining the module	Students have strong knowledge on abstract analysis and on theory in algebra, especially vector space, linear independence set, and orthonormal basis.		
Module objectives/intended learning outcomes	After completing this course, the students should have the ability to: CO 1 integrate one or more theories in operator theory.		
	CO 2 justify properties which are important in mathematical analysis research		

Content	Operator theory: Preview on Hilbert spaces. Linear operator and adjoints: basic notion, bounded linear operators/functionals, isometry and isomorphism, adjoint operators, Banach-Steinhaus' Theorem, Strong and Weak convergent, projections. Closed linear operators: closed and closable operators, Closed Graph Theorem. Theory of Spectral, symmetry and self-adjoint operators, normal operators.			
Examination forms	Oral presentation, essay.			
Study and examination	The final mark will be weighted as follows:			
requirements	Assessment methods	Weight		
	(components, activites)	(percentage)		
	1 Final Examination : final project/presentation/oral exam/essay	30-40%		
	2 Mid-Term Examination : presentation/oral exam/essay	30-40%		
	3 Class Activities: presentation, quiz, homework, etc.	20-30%		
	To pass the course, students are expected to get a minimum grade of B.			
Reading list	 Weidmann, J., 1980, Linear Operators in Hilbert Spaces, Springer- Verlag, New York. Conway, J.B., 2019, A Course in Functional Analysis 3rd Ediiton Springer Verlag, New York. 			

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v	v		v	v
CO 2	v	v	V		v	V
	:					

Last Modified Date: September 04, 2023.

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp Email : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module Name	Topics in Functional Analysis		
Code, if applicable	MMM-7107		
Subtitle, if applicable	Fuzzy functional analysis		
Semester(s) in which the module is taught	1 st or 2 nd semester		
Person responsible for the module	Chair of the Lab. Of Analysis		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree		
Teaching methods	Lecture, classroom discussion, flipped classroom, project		
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.		
Credit points in Credit Units	3		
Required and recommended prerequisites for joining the module	Students have strong knowledge on abstract analysis and on theory in algebra, especially vector space, linear independence set, and orthonormal basis.		
Module objectives/intended learning outcomes	 After completing this course, the students should have the ability to: CO 1 justify properties that are important in fuzzy mathematical analysis research CO 2 Integrate one or more theories in fuzzy functional analysis in developing and solving problems with a fuzzy functional 		

Content	Fuzzy functional analysis: fuzzy number and its characteristics, inequality, fuzzy Banach space or fuzzy metric space, continuous t-norms, open mapping theorem.		
Examination forms	Oral presentation, essay/writing a report.		
Study and examination requirements	The final mark will be weighted as follows: Assessment methods Weight No (components, activites) (percentage) 1 Final Examination : final 30-40% project/presentation/oral exam/essay 2 Mid-Term Examination : presentation/oral 30-40% 2 Mid-Term Examination : presentation/oral 30-40% exam/essay 3 Class Activities: presentation, quiz, homework, 20-30% etc. To pass the course, students are expected to get a minimum grade of B.		
Media employed	Board, LCD Projector, Laptop/Computer		
Reading list	 Zadeh, L.A. and Aliev, R.A.;, 2018, Fuzzy Logic Theory and Applications, World Scientific Book. Diamond, P. and Kloeden, P., 1994, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific Book. Cho, Y.J., Rassias, and T.M., Saadati, R., 2018. Fuzzy Normed Spaces and Fuzzy Metric Spaces, Springer Cham. R. Saadati and S. M. Vaezpour, 2005, Some Results on Fuzzy Banach Spaces, J. Appl. Math. & Computing Vol. 17(2005), No. 1 - 2, pp. 475 – 484 Berberian, S.K., 1999, Introduction to Hilbert space Vol. 287, American Mathematical Soc. Conway, J.B., 2019, A Course in Functional Analysis 3rd Edition, Springer Verlag, New York. 		

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v	v		v	v
CO 2	v	v	v		v	v

Last Modified Date : 4 September 2023