

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Doctor in Mathematics

Telp	: +62 274 552243
Email	: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id
Website	: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Topics in Function and Sequence Spaces
Module level, if applicable	Doctor
Code, if applicable	MMM 7109
Subtitle, if applicable	
Semester(s) in which the module is taught	1 st (fisrt)
Person responsible for the	Chair of Analysis Research Group
module	
Language	Bahasa Indonesia
Relation to curriculum	Doctor Degree, Elective course, 1 st (first) semester
Type of teaching, contact hours	3 hours lectures, 3 hours structured activities.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Requirements according to	
the examination regulations	
Recommended prerequisites	
Module objectives/intended learning outcomes	 After completing this course the students have ability to: CO 1. justify and prove some concepts related to function spaces and sequence spaces. CO 2. combine some properties in function spaces or sequence spaces to solve some problems related to function spaces and sequence spaces.
Content	Sequence Spaces:
	• The spaces c_0, c, bv, ℓ_p $(1 \le p < \infty)$, and, ℓ_{∞} .
	An Orlicz function and its properties.
	• Orlicz spaces and modular spaces.
	• Normed spaces and <i>F</i> -normed spaces.
	• Sequence spaces defined by an Orlicz function.
	Function spaces:
	• Spaces of bounded variation and absolutely continuous functions.
	the Lebesgue spaces.
	An Orlicz function and its properties.
	Orlicz spaces and modular spaces.
	• Normed spaces and <i>F</i> -normed spaces.
	• The spaces of funtions defined by an Orlicz function.

Study and examination	The final mark will be weighted as follows:			
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)		
examination	1 Final Examination	45%		
	2 Mid-Term Examination	30%		
	3 Class Activities: Quiz, Homework, etc	25%		
	To pass the course, students are expected to get a minimum grade of B.			
Media employed	Board, LCD Projector, Laptop/Computer			
Reading List	1. Lindenstrauss, J. and Tzafriri, L., 1996, <i>Classical Banach Spaces I and</i>			
	II, Springer.			
	2. Musielak, J., 1983, Orlicz Spaces and Modular Space, Springer Verlag,			
	3. Halsey L. Royden, and Patrick M. Fitzpatrick, 2010, <i>Re</i> Prentice Hall.	eal Analysis, 4th Edition,		

СО	– PLO	Map	ping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V	V		V
CO 2	v	v	v	v		V

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp : +62 274 552243

Telp: +62 274 552243Email: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.idWebsite: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module designation	Topics in Function and Sequence Spaces		
Code, if applicable	MMM-7109		
Subtitle, if applicable	Function Spaces		
Semester(s) in which the module is taught	1 st or 2 nd semester		
Person responsible for the module	Chair of the Lab. Of Analysis		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree		
Teaching methods	Lecture, classroom discussion, flipped classroom.		
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.		
Credit points in Credit Units	3		
Required and recommended prerequisites for joining the module	Students have strong knowledge on: -theory in algebra, especially vector space, linear independence set, and orthonormal basis. -measure theory and integrations.		
Module objectives/intended learning outcomes	After completing this course the students have ability to: CO 1. justify and prove some concepts related to function spaces. CO 2. combine some properties in function spaces to solve some problems related to function spaces.		

Content	• Spaces of bounded variation and absolutely continuous functions.			
	• the Lebesgue spaces.			
	• An Orlicz function and its properties.			
	• Orlicz spaces and modular spaces.	Orlicz spaces and modular spaces.		
	• Normed spaces and F-normed spaces.			
	• The spaces of funtions defined by an Orlicz func	tion.		
Examination forms	Oral presentation, essay.			
Study and examination	The final mark will be weighted as follows:			
requirements	Assessment methods	Weight		
	(components, activites)	(percentage)		
	1 Final Examination : final project/presentation/oral exam/essay	30-40%		
	2 Mid-Term Examination : presentation/oral exam/essay	30-40%		
	3 Class Activities: presentation, quiz, homework, etc.	20-30%		
	To pass the course, students are expected to get a minim	um grade of B.		
Reading list	1. Lindenstrauss, J. and Tzafriri, L., 1996, Classical Banach Spaces I and II, Springer.			
	2. Musielak, J., 1983, Orlicz Spaces and Modular Space, Springer Verlag,			
	3. Halsey L. Royden, and Patrick M. Fitzpatric Analysis, 4th Edition, Prentice Hall.	ck, 2010, Real		

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v	v	v		v
CO 2	v	v	v	v		v
	:					

Last Modified Date: September 04, 2023.

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp : +62 274 552243 Email : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id Website : http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module designation	Topics in Function and Sequence Spaces
Code, if applicable	MMM-7109
Subtitle, if applicable	Sequence Spaces
Semester(s) in which the module is taught	1 st or 2 nd semester
Person responsible for the module	Chair of the Lab. Of Analysis
Language	Bahasa Indonesia
Relation to curriculum	Elective course in the 1 st or 2 nd semester of doctor's degree
Teaching methods	Lecture, classroom discussion, flipped classroom.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students have strong knowledge on: -theory in algebra, especially vector space, linear independence set, and orthonormal basis. -sequence, series, and summability.
Module objectives/intended learning outcomes	After completing this course the students have ability to: CO 1. justify and prove some concepts related to sequence spaces. CO 2. combine some properties in function spaces to solve some problems related to sequence spaces.

Content	 The spaces c₀, c, bv, ℓ_p (1 ≤ p < ∞), and, ℓ_∞. An Orlicz function and its properties. Orlicz spaces and modular spaces. Normed spaces and F-normed spaces. Sequence spaces defined by an Orlicz function. 	The spaces c_0, c, bv, ℓ_p $(1 \le p < \infty), and, \ell_\infty$. An Orlicz function and its properties. Orlicz spaces and modular spaces. Normed spaces and F-normed spaces. Sequence spaces defined by an Orlicz function.		
Examination forms	Oral presentation, essay.			
Study and examination	The final mark will be weighted as follows:			
requirements	Assessment methods	Weight		
	(components, activites)	(percentage)		
	1 Final Examination : final project/presentation/oral exam/essay	30-40%		
	2 Mid-Term Examination : presentation/oral exam/essay	30-40%		
	3 Class Activities: presentation, quiz, homework, etc.	20-30%		
	To pass the course, students are expected to get a minimu	um grade of B.		
Reading list	1. Lindenstrauss, J. and Tzafriri, L., 1996, Classical Banach Spaces I and II, Springer.			
	2. Musielak, J., 1983, Orlicz Spaces and Modular S Verlag,	pace, Springer		
<i>3. Halsey L. Royden, and Patrick M. Fitzpatric Analysis, 4th Edition, Prentice Hall.</i>				

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v	v	v		v
CO 2	v	v	v	v		v
	:					

Last Modified Date: September 04, 2023.