

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp: +62 274 552243Email: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.idWebsite: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Topic in Optimization Theory
Code, if applicable	MMM 7315
Subtitle, if applicable	-
Semester(s) in which the module is taught	1 st or 2 nd
Person responsible for the module	Chair of Applied Mathematics Research Group
Language	Bahasa Indonesia
Relation to curriculum	Doctoral Degree in Mathematics, Compulsory / Elective Course
Teaching methods	Lectures, structured activities (assignments, team-project)
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students should have competences in Optimization Theory

Module objectives/intended learning outcomes	 On successful completion of this course, students should be able: CO 1: to mastery basic concept in non linear optimization problems such as convex set, convex function, quasi-convex function and theorems related to optimization problems with convex functions and quasi-convex function. CO2. to solve optimization problems analitically such as optimization problem without constraints, optimization problem with equation constraints, and optimization problems with inequality constraints. CO3. to solve optimization problem numerically. CO4. to relate the theory and applications of optimization problem, and to interpret the solutions. 				be able: n problems on and functions and optimization equation onstraints. n problem, and	
	C o	O5. to ptimiz	o mastery about intro- zation.	duction to adva	nce theories	in
Content	In this lecture, students must carry out several academic activities under the supervision of the lecturer. Academic activities are carried out based on literature studies to competences one or more of the topics in optimization theory, including: Optimization without constraints, optimization with constraints, existence theorems of optimal solutions concerning convex functions and its generalization, fuzzy optimization theory, numerical methods of local and global optimization, numerical methods of nondifferentiable optimization, multi objective optimization theories to find the solutions, application of optimization theory to real problems					
Examination forms	Written assignments, written exams, class engagement, presentation, case-based project					
Study and examination requirements		To pass the course, the minimum grade is B. The final mark will be weighted as follows:				
		No	Assessment methods (components, activities)	Weight (percentage)	Cognitive	Case/Project Based
		1.	Final Examination	25	20	5
		2.	Mid-Term Examination	25	20	5
		3.	Homework	20	10	10
		4.	Presentation	30		30
			TOTAL	100%	50%	50%

Media employed	Board, LCD Projector, Laptop/Computer
Reading list	 Mokhtar S Bazaraa, Hanif D. Sherali, C.M.Shetty, 2006, Nonlinear Programming. Theory andAlgorithms 3rd Edition, John Wiley and Sons.
	 Edwin K.P. Chong, and Stanislaw H. Zak, 2008, An Introduction to Optimization 3rd Edition, John Wiley & Sons.
	 Boyd, S., Vandenberghe, L., 2004, Convex Optimization, Cambridge University Press.
	4. Sakawa, M., 1993, Fuzzy Sets and Interactive Multiobjective Optimization, Springer.
	5. Andrew, R. C, Katya, S., Luis, N., V., 2009, Introduction to
	Derivative-Free Optimization, MOS-SIAM Series on
	Optimization.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1						
CO 2						
CO 3						
CO 4						
CO 5				\checkmark		

Programme Learning Outcomes (PLO) Doctoral Programme in Mathematics

PLO-1	:	Attitude:
		Devote to God Almighty, uphold the humanity values, internalize academic values and ethics, responsible in working in the area of expertise independently.
PLO-2	:	Knowledge:
		Mastering philosophy of mathematics and one of the fields in mathematics (algebra, analysis, applied mathematics, statistics, computational mathematics, computational statistics).
PLO-3	•••	Knowledge:
		Able to think logically, analytically, inductively, deductively, and structured; having the ability to manage, lead, and develop research programs independently, and able to communicate the thoughts as well as his work to the scientific community and the general public.

PLO-4	:	Skill:
		Creating new concepts and / or new methods (original) in the field of mathematics that are recognized nationally and internationally.
PLO-5	:	Skill:
		Able to apply mathematics according to their field of expertise to solve problems including those that require a multidisciplinary, cross-disciplinary, or trans-disciplinary approach.
PLO-6	:	Life Long Learning:
		Having lifelong learning skills and adaptive to the development of science and technology, especially in fields related to Mathematics and its applications.

Compilation Date	:	July 16, 2022
Modified Date	:	July 25, 2022

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module designation	Topic in Optimization Theory
Code, if applicable	MMM 7315
Subtitle, if applicable	Fuzzy Multi-objective Linear and Non-linear Programming
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)
Language	Bahasa Indonesia
Relation to curriculum	Doctoral Degree in Mathematics, Elective
Teaching methods	Lectures, structured activities (assignments, project based learning)
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students should have competences in Linear Programming, Multi-objective Programming , Optimization Theory, and Fuzzy Programming
Module objectives/intended learning outcomes	 After completing this course the students should have: CO1 ability to solve the fuzzy multi-objective linear programming. CO2 ability to solve the fuzzy multi-objective non-linear programming .

Content	 Introduction: fuzzy number and fuzzy programming, multi- objective linear programming (MOPLP) and goal programming. The relationship beetween goal programming and fuzzy programming. Fuzzy multi-objective linear programming. Fuzzy goal programming for solving MOLP. Fuzzy multi-objective non-linear Programming 			
Examination forms	report, w	ritten assignments, oral pro	esentation	
Study and examination requirements	To pass the course, the minimum grade is B+. The final mark will be weighted as follows:			
	No	Assessment methods (components, activities)	Weight (percentage)	
	1.	Final Examination	30	
	2.	Mid-Term Examination	30	
	3.	Homework	20	
	4.	Presentation	20	
		TOTAL	100%	
Reading list	1. E F 2. N P 3. S 3. S 4. S 5. S 6. S 6. S 6. S 8. V S 8. V 5. S	Bector, C.R. and Chandra, S Programming and Fuzzy Ga Aohamed, R.H., 1997, The r programming and fuzzy prog ystems, Vol 89, pp. 215-222 bakawa, M. and Yano, H. Aaking for Multiobjective Problems with Fuzzy Parama 9: 315-326. bakawa, M., 1998, Fuzzy N Single or Multiple Objective bakawa, M, 1993, Fuzzy bjective Optimization, Plen bakawa, M, 1993, Fuzzy Set bjective Optimization, Plen Canino, T., Tanaka, T. and I bjective Programming and Springer, Berlin. Veeramani,C., Duraisamy,C. olving Fuzzy Multi-Objective Problems with Linear Memk ournal of Basic and Appliea 171.	S., 2005, Fuzzy Mathemati mes, Springer, Germany. relationship beetween goa gramming, Fuzzy Sets and 2. , 1989, Interactive Decis ve Nonlinear Programming eters, Fuzzy Sets and Systen Nonlinear Programming w Functions, Springer. Sets and Interactive Multi- num Press, New York. s and Interactive Multi- num Press, New York. nuiguchi, M., 2003, Multi- Goal Programming, and Nagoorgani,A., 2011, ve Linear Programming pership Functions, Australia Sciences, 5(8), pp.1163-	ical I ion ing ms, vith ulti-

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V			V
CO 2	V	V	V			V

Last Modified Date : September 1, 2023

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics Telp : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module designation	Topics in Optimization Theory
Code, if applicable	MMM 7315
Subtitle, if applicable	Optimization Theory
Semester(s) in which the module is taught	1 st or 2 nd (first or second semester)
Person responsible for the module	Chair of Applied Mathematics Research Group
Language	Bahasa Indonesia
Relation to curriculum	Compulsory / elective / specialisation Names of other study programmes with which the module is shared
Teaching methods	3x50 minutes lectures, 3x60 minutes structured activities.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	-

Module objectives/intended	After completing these course the students will be able:		
learning outcomes	CO1. to recognize basic concept in non linear optimization problems such as convex set, convex function and theorems related to optimization problems with convex functions.		
	CO2. to solve optimization problems analitically such as optimization problem without constraints, optimization problem with equation constraints, and optimization problems with inequality constraints.		
	CO3. to solve optimization problem numerically.		
	CO4. To relate between the theory and applications of optimization problem, and to interpret the solutions.		
	CO5. To recognize about introduction to advance theories in optimization.		
Content	In this lecture, students must carry out several academic activities under the supervision of a lecturer. Academic activities are carried out based on literature studies to master one or more of the topics in Optimization Theory, including:		
	unconstrained optimization, optimization with constraints, the theory of the existence of optimal solutions involving convex functions and their generalizations, analytical method to solve optimization problem, Kuhn-Tucker theory, numerical methods for local and global optimization problems, numerical methods for undifferentiated optimization problems, numerical methods for black-box optimization problems. Multi-objective optimization theory and methods to find the solution. Application of optimization theory to real problems.		
Examination forms	Quiz, homework, report, manuscript, oral presentation, essay.		
Study and examination requirements	Requirements for successfully passing the module		
Reading list	 Mokhtar S Bazaraa, Hanif D. Sherali, C.M.Shetty, 2006, Nonlinear Programming. Theory and Algorithms 3rd Edition, John Wiley and Sons. Edwin K.P. Chong. dan Stanislaw H. Zak. 1996. An Introduction 		
	to Optimization, John Wiley & Sons.		
	3. Boyd, S., Vandenberghe, L., 2004, Convex Optimization, Cambridge University Press.		
	4. Sakawa, M., 1993, Fuzzy Sets and Interactive Multiobjective Optimization, Springer.		
	5. Andrew, R. C, Katya, S., Luis, N., V., 2009, Introduction To Derivative-Free Optimization, <u>MOS-SIAM Series on</u> <u>Optimization</u> .		

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	\checkmark					
CO 2	\checkmark	\checkmark				
CO 3	\checkmark	\checkmark				
CO 4						
CO 5	\checkmark				\checkmark	\checkmark

Last Modified Date : September 7, 2023