

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp: +62 274 552243Email: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.idWebsite: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Topic in Optimization Theory	
Module level, if applicable	Doctoral Program	
Code, if applicable	MMM 7315	
Subtitle, if applicable	-	
Courses, if applicable	Topic in Optimization Theory	
Semester(s) in which the module is taught	1 st or 2 nd	
Person responsible for the module	Chair of Applied Mathematics Research Group	
Lecturer(s)	Prof. Dr. Salmah, M.Si.	
Language	Bahasa Indonesia	
Relation to curriculum	Doctoral Degree in Mathematics, Compulsory / Elective Course	
Teaching methods	Lectures, structured activities (assignments, team-project)	
Workload (incl. contact hours, self-study hours)	 3x50 minutes lectures, 3x60 minutes structured activities, 3x60 minutes individual study, In 16 weeks per semester (including assignments and examinations) 	
Credit points	3	
Required and recommended prerequisites for joining the module	Students should have competences in Optimization Theory	

Module	On successful completion of this course, students should be able:					
objectives/intended learning outcomes	CO 1: to understand basic concept in non linear optimization problems such as convex set, convex function, quasiconvex function and theorems related to optimization problems with convex functions and quasiconvex function.					
	CO2. to solve optimization problems analitically such as optimization problem without constraints, optimization problem with equation constraints, and optimization problems with inequality constraints.					equation
	CO3. to solve optimization problem numerically.					
	CO4. to relate the theory and applications of optimization problem, and to interpret the solutions.					
	CO5. to recognize about introduction to advance theories in optimization.					
Content	In this lecture, students must carry out several academic activities under the supervision of the lecturer. Academic activities are carried out based on literature studies to competences one or more of the topics in optimization theory, including:					s are carried
	Optimization without constraints, optimization with constraints, existence theorems of optimal solutions concerning convex functions and its generalization, fuzzy optimization theory, numerical methods of local and global optimization, numerical methods of nondifferentiable optimization, multi objective optimization theories to find the solutions, application of optimization theory to real problems.					
Examination forms	Written assignments, written exams, class engagement, presentation, case-based project					
Study and examination requirements	To pass the course, the minimum grade is B. The final mark will be weighted as follows:					
		No	Assessment methods (components, activities)	Weight (percentage)	Cognitive	Case/Project Based
		1.	Final Examination	25	20	5
		2.	Mid-Term Examination	25	20	5
		3.	Homework	20	10	10
		4.	Presentation	30		30
			TOTAL	100%	50%	50%

Media employed	Board, LCD Projector, Laptop/Computer		
Reading list	 Mokhtar S Bazaraa, Hanif D. Sherali, C.M.Shetty, 2006, Nonlinear Programming. Theory and Algorithms 3rd Edition, John Wiley and Sons. Edwin K.P. Chong, and Stanislaw H. Zak, 2008, An 		
	 Introduction to Optimization 3rd Edition, John Wiley & Sons. Boyd, S., Vandenberghe, L., 2004, <i>Convex Optimization</i>, Cambridge University Press. 		
	4. Sakawa, M., 1993, Fuzzy Sets and Interactive Multiobjective Optimization, Springer.		
	 Andrew, R. C, Katya, S., Luis, N., V., 2009, Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization. 		

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	\checkmark					
CO 2	\checkmark					
CO 3	\checkmark					
CO 4	\checkmark	\checkmark			\checkmark	\checkmark
CO 5	\checkmark			\checkmark		\checkmark

Programme Learning Outcomes (PLO) Doctoral Programme in Mathematics

PLO-1	:	Attitude:
		Devote to God Almighty, uphold the humanity values, internalize academic values and ethics, responsible in working in the area of expertise independently.
PLO-2	:	Knowledge:
		Mastering philosophy of mathematics and one of the fields in mathematics (algebra, analysis, applied mathematics, statistics, computational mathematics, computational statistics).
PLO-3	:	Knowledge: Able to think logically, analytically, inductively, deductively, and structured; having the ability to manage, lead, and develop research programs independently, and able to communicate the thoughts as well as his work to the scientific community and the general public.

PLO-4	:	Skill:
		Creating new concepts and / or new methods (original) in the field of mathematics that are recognized nationally and internationally.
PLO-5	:	Skill:
		Able to apply mathematics according to their field of expertise to solve problems including those that require a multidisciplinary, cross-disciplinary, or trans- disciplinary approach.
PLO-6	:	Life Long Learning:
		Having lifelong learning skills and adaptive to the development of science and technology, especially in fields related to Mathematics and its applications.

Compilation Date	:	July 16, 2022
Modified Date	:	July 25, 2022