UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekin Utara Bulaksumur Yoøvakarta 55281 Teln: +62 274 552243 Fax: +62 274 555131 Email: math@uem.acid Website: http://math.fmipa.uem.acid

Doctor in Mathematics

Telp Email : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1
Code, if applicable	MMM 7209
Subtitle, if applicable	-
Courses, if applicable	Topics in Algebra 1
Semester(s) in which the module is taught	1 st or 2 nd Semester
Person responsible for the module	Head of Algebra Research Group
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, project
Workload (incl. contact hours, self-study hours)	The total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes of structured activities per week, and 120 minutes of individual study per week, in total is 16 weeks per semester, including mid and final exams.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.

Module objectives/intended	Upon successful completion, students are able to				
learning outcomes	CO1 : analyze concepts, philosophy, definitions and im advanced abstract algebra related to his/her research;	CO1 : analyze concepts, philosophy, definitions and important properties of advanced abstract algebra related to his/her research;			
	CO2 : prove important properties of advanced abstract algebra related to his/her research;				
	CO3 : make conjectures to further subjects related to hi	s/her research;			
	CO4 : expand or improve special prior knowledge relate	ed to his/her research.			
Content	 Coding theory Advanced abstract algebra Semigroup theory Module theory Advanced ring theory Finite field Capita selecta in abstract algebra 				
Examination forms	Oral presentation, essay, project.				
Study and examination requirements		The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:			
	No Assessment methods (components, activities)	Weight (percentage)			
	1 Final Examination	20 - 30%			
	2 Mid-Term Examination	20 - 30%			
	3 Class Activities: Quiz, Homework, etc.	50 - 55%			
	Minimum final mark to pass : B				
Media employed	Whiteboard, screen, laptop.				
Reading list	 Kurz, S., Advanced and current topics in coding University of Bayreuth, 2020. Richardson, T., Urbanke, R., Modern Coding Theo Press, 2008. 	, , .			

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	v				v
CO 2	v	V				v
CO 3		V				
CO 4		V				

Compilation Date : September 13th 2023

Modified Date : February 5th 2024

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

MODULE HANDBOOK

Doctor in Mathematics

Telp Email : +62 274 552243
 Temail
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development
Code, if applicable	MMM 7209
Subtitle, if applicable	Coding Theory
Semester(s) in which the module is taught	1 st or 2 nd Semester
Person responsible for the module	Head of Algebra Research Group
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, project.
Workload (incl. contact hours, self-study hours)	The total workload is 232 hours per semester, which consists of 50 minutes of lectures per week, 120 minutes of structured activities per week, and 120 minutes of individual study per week, in total is 16 weeks per semester, including mid and final exams.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.
Module objectives/intended	Upon successful completion, students are able to
learning outcomes	CO1 : analyze concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;
	CO2 : prove important properties of advanced algebra related to his/her research;
	CO3 : make conjectures to further subjects related to his/her research;
	CO4 : expand or improve special prior knowledge related to his/her research.
Content	Topics and syllabus depend on the research related to coding theory.

Examination forms	Oral presentation, essay.				
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
	No Assessment methods (components, activities) Weight (percentage)				
	1 Final Examination 20 - 30%				
	2 Mid-Term Examination 20 - 30%				
	3 Class Activities: Quiz, Homework, etc 50 - 5				
	Minimum final mark to pass : B				
Media employed	Whiteboard, screen, laptop				
Reading list	 Kurz, S., Advanced and current topics in coding theory, Lecture Notes, University of Bayreuth, 2020. Richardson, T., Urbanke, R., Modern Coding Theory, Cambridge University Press, 2008. 				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V		V	V
CO 2	V	V	V		V	V
CO 3	V	V	V		V	V
CO 4	V	V	V		v	V

Compilation Date : September 13th 2023

Modified Date : February 5th 2024

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp : +62 274 552243
 Temail
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topic in Algebra 1 (Advance Abstract Algebra and Its Developments)
Code, if applicable	MMM 7209
Subtitle, if applicable	Semigroup Theory
Semester(s) in which the module is taught	1 st or 2 nd semester
Person responsible for the module	Head of Algebra Laboratory
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, presentation, project
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3 Credits Points
Required and recommended prerequisites for joining the module	Students master the concepts of logic and sets, algebraic structure theory and liner algebra
Module objectives/intended	After taking this course, students will be able to
learning outcomes	CO 1. clarify the concept, definitions of the lattice theory
	CO 2. prove properties related to the lattice theory and lattice algebraic
	CO 3. formulate conjectures related to the advance lattice theory.
	CO 4. generalize the concepts of lattice into his research topics and validates them

Semigroup, monoid, ideal, natural order. Green equivalence and				
semigroup homomorphism. Regular elements, idempotent elements,				
generalized inverses. Special semigroups, inverse semigroups.				
Semigroup Algebras, Graph, Application semigroup.				
Oral presentation, essay, paper				
The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
NoAssessment methods (components, activities)1Final Examination	Weight (percentage) 20 - 30%			
	20 - 30%			
	20 - 50%			
Minimum final mark to pass : B				
Whiteboard, LCD screen, laptop				
1. Clifford, A.H. and Preston, G.B., 1961, <i>The Algebraic Theory of Semigroups</i> , American Math. Society, Rhode Island				
2. Gondran, M., and Minoux, M., 2010, <i>Graph, Dioids, and Semirings</i> : News Models and Algoritms, Springer				
3. Howie, J. M., 1996, <i>Fundamentals of Semigroup Theory</i> , Oxford University Press.				
4. Okninski, J, 2020, Semigroup Algebras, CRC Press.				
 Okiniiski, J. 2020, Semigroup Pugeons, Cicc Press. Pietrich, M., 1984, Inverse semigroups (Pure and applied mathematics) (Canadian Mathematical Society Series of Monographs and Advan), John Wiley & Sons, 				
	 semigroup homomorphism. Regular elements, idempoted generalized inverses. Special semigroups, inverse semigroup. Oral presentation, essay, paper The final mark will be computed from a proportional we assignments, mid examination and final examination. Twill be weighted as follows: No Assessment methods (components, activities) 1 Final Examination 2 Mid-Term Examination 3 Class Activities: Quiz, Project, etc. Minimum final mark to pass : B Whiteboard, LCD screen, laptop 1. Clifford, A.H. and Preston, G.B., 1961, <i>The Algebraic Theory</i> American Math. Society, Rhode Island 2. Gondran, M., and Minoux, M., 2010, <i>Graph, Dioids, and Ser</i> Models and Algoritms, Springer 3. Howie, J. M., 1996, <i>Fundamentals of Semigroup Theory</i>, Oxfore Press. 4. Okninski, J, 2020, <i>Semigroup Algebras</i>, CRC Press. 5. Pietrich, M., 1984, <i>Inverse semigroups</i> (Pure and applied mathematics) (Canadian Mathematical Society Seried) 			

z

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		v	v			
CO 2		v	v			
CO 3	v	v	v	V	V	V
CO 4				V	V	

Compilation Date	: August 19, 2022
First Update	: September 12, 2023
Last Update	: February 1, 2024

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

MODULE HANDBOOK

Telp : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development
Code, if applicable	MMM 7209
Subtitle, if applicable	Algebraic Structure
Semester(s) in which the module is taught	1 st or 2 nd Semester
Person responsible for the module	Head of Algebra Research Group
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, project.
Workload (incl. contact hours, self-study hours)	The total workload is 232 hours per semester, which consists of 50 minutes of lectures per week, 120 minutes of structured activities per week, and 120 minutes of individual study per week, in total is 16 weeks per semester, including mid and final exams.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.
Module objectives/intended	Upon successful completion, students are able to
learning outcomes	CO1: analyze concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;
	CO 2: prove important properties of advanced algebra related to his/her research;
	CO 3: make conjectures to further subjects related to his/her research;
	CO 4: expand or improve special prior knowledge related to his/her research.

Content	This course gives material about advanced abstract algebra, such as tensor products, comodules, semigroups, etc. which support his/her research. Topics and syllabus depend on the research.					
Examination forms	Oral presentation and/or essay.					
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, and mid and final examinations. The final mark will be weighted as follows:					
	No Assessment methods (components, activities) (percentage)	Weight				
	1 Final Examination 20 - 30%					
	2 Mid-Term Examination 20 - 30%					
	3 Class Activities: Quiz, Homework, etc. 50 - 55%					
	The minimum final mark to pass is B.					
Media employed	Whiteboard, screen, laptop.					
Reading list	 Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach Science Publisher, Philadelphia, 1991. Wisbauer, R., Modules and Algebras : Bimodule Structure on Group Actions and Algebras, Addison Wesley Longman, Essex, 1996. Karpilovsky, G., Induced Modules over Group Algebras, North Holland, Amsterdam, 2012. Brezinski, T., Wisbauer, R., Corings and Comodules, Cambridge University Press, 2003. 					

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V		V	V
CO 2	v	v	V		V	V
CO 3	V	V	V		V	V
CO 4	V	V	V		V	V

Compilation Date	:	September 13th 2023
-------------------------	---	---------------------

Modified Date : February 6th 2024

Г

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp : +62 274 552243
 Temail
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development	
Code, if applicable	MMM 7209	
Subtitle, if applicable	Module Theory	
Semester(s) in which the module is taught	1 st or 2 nd Semester	
Person responsible for the module	Head of Algebra Research Group	
Language	Bahasa Indonesia	
Relation to curriculum	Elective course	
Teaching methods	Lecture, project.	
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.	
Credit points in Credit Units	3	
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.	
Module objectives/intended	Upon successful completion, students are able to	
learning outcomes	CO1 : analyze concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;	
	CO2 : prove important properties of advanced algebra related to his/her research;	
	CO3 : make conjectures to further subjects related to his/her research;	
	CO4 :expand or improve special prior knowledge related to his/her research.	

Content	Topics and syllabus depend on the research related to module theory.				
Examination forms	Oral presentation, essay.				
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
	No Assessment methods (components, activities) Weight (percentage)				
	1 Final Examination 20 - 30 ^o				
	2 Mid-Term Examination 20				
	3 Class Activities: Quiz, Homework, etc. 50 -				
	Minimum final mark to pass : B				
Media employed	Whiteboard, screen, laptop.				
Reading list	 Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach Science Publisher, Philadelphia, 1991. Wisbauer, R., Modules and Algebras : Bimodule Structure on 				
	Group Actions and Algebras, Addison Wesley Longman, Essex, 1996.				
	 Karpilovsky, G., Induced Modules over Grou North Holland, Amsterdam, 2012. 	ıp Algebras,			
	4. Brezinski, T., Wisbauer, R., Corings and Cambridge University Press, 2003.	Comodules,			

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	V	v		V	v
CO 2	v	V	v		v	v
CO 3	v	V	v		v	v
CO 4	V	V	V		V	V

Compilation Date	:	September 13th 2023

Modified Date : February 6th 2024

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp Email : +62 274 552243
 Temail
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development			
Code, if applicable	MMM 7209			
Subtitle, if applicable	Advanced Ring Theory			
Semester(s) in which the module is taught	1 st or 2 nd Semester			
Person responsible for the module	Head of Algebra Research Group			
Language	Bahasa Indonesia			
Relation to curriculum	Elective course			
Teaching methods	Lecture, project.			
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.			
Credit points in Credit Units	3			
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.			
Module objectives/intended	Upon successful completion, students are able to			
learning outcomes	CO1 : analyze concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;			
	CO2 : prove important properties of advanced algebra related to his/her research;			
	CO3 : make conjectures to further subjects related to his/her research;			
	CO4 : expand or improve special prior knowledge related to his/her research.			
Content	Topics and syllabus depend on the research related to advanced ring theory.			

Examination forms	Oral pr	resentation, essay.			
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
	No Assessment methods (components, activities) Weight (percentage)				
	1	Final Examination	20 - 30%		
	2	Mid-Term Examination	20 - 30%		
	3	Class Activities: Quiz, Homework, etc. 50 - 55%			
	Minim	um final mark to pass : B			
Media employed	Whiteboard, screen, laptop.				
Reading list	1.	Lam, T.Y., Lectures on Modules and Rings, Sp York, 1999.	pringer, New		
	2. Lam, T.Y., A First Course in Noncommutative Rings, Springer Verlag, Heidelberg, 1991.				
	3.	Wisbauer, R., Foundations of Module and F Gordon and Breach Science Publisher, Philadel			
	 Wisbauer, R., Modules and Algebras : Bimodule Structure on Group Actions and Algebras, Addison Wesley Longman, Essex, 1996. 				
	5.	Karpilovsky, G., Induced Modules over Gro North Holland, Amsterdam, 2012.	up Algebras,		
	6.	Brezinski, T., Wisbauer, R., Corings and Cambridge University Press, 2003.	Comodules,		

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V		V	V
CO 2	V	V	V		V	V
CO 3	V	V	V		V	v
CO 4	V	V	V		V	V

Compilation Date : September 13th 2023

Modified Date : February 6th 2024

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp : +62 274 552243
 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development			
Code, if applicable	MMM 7209			
Subtitle, if applicable	Finite Field			
Semester(s) in which the module is taught	1 st or 2 nd Semester			
Person responsible for the module	Head of Algebra Research Group			
Language	Bahasa Indonesia			
Relation to curriculum	Elective course			
Teaching methods	Lecture, project.			
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.			
Credit points in Credit Units	3			
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.			
Module objectives/intended	Upon successful completion, students are able to			
learning outcomes	CO1 : describe concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;			
	CO2 : to prove important properties of advanced algebra related to his/her research;			
	CO3 : make conjectures to further subjects related to his/her research;			
	CO4 : expand or improve special prior knowledge related to his/her research.			
Content	Topics and syllabus depend on the research related to finite field.			

Examination forms	Oral presentation, essay.				
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
	No Assessment methods (components, activities) Weight (percentage)				
	1 Final Examination 20 - 30				
	2Mid-Term Examination20 - 30%3Class Activities: Quiz, Homework, etc.50 - 55%Minimum final mark to pass : B				
Media employed	Whiteboard, screen, laptop.				
Reading list	 Fraleigh, J.B., A First Course in Abstract Algebra, 7th Edition, 2003, Pearson New International. Dummit, D.S., Foote, R.M., 2002, Abstract Algebra, 2nd Edition, John Wiley and Sons. Lidl, R., Niederreiter, H., 2008, Finite Field, Cambridge University Press. 				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v	V	v		V	v
CO 2	v	v	v		V	V
CO 3	v	v	v		v	v
CO 4	V	V	V		V	V

Compilation Date : September 13th 2023

Modified Date : February 6th 2024

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp : +62 274 552243
 Temail
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

Module designation	Topics in Algebra 1 : Advanced Abstract Algebra and Its Development			
Code, if applicable	MMM 7209			
Subtitle, if applicable	Capita Selecta			
Semester(s) in which the module is taught	1 st or 2 nd Semester			
Person responsible for the module	Head of Algebra Research Group			
Language	Bahasa Indonesia			
Relation to curriculum	Elective course			
Teaching methods	Lecture, project.			
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes structured activities per week, 120 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.			
Credit points in Credit Units	3			
Required and recommended prerequisites for joining the module	Students should have prior knowledge such as group theory, ring theory and linear algebra.			
Module objectives/intended learning outcomes	Upon successful completion, students are able to			
	CO1 : analyze concepts, philosophy, definitions and important properties of advanced algebra related to his/her research;			
	CO2 : prove important properties of advanced algebra related to his/her research;			
	CO3 : make conjectures to further subjects related to his/her research;			
	CO4 : expand or improve special prior knowledge related to his/her research.			
Content	Topics and syllabus depend on the research.			

Examination forms	Oral presentation, essay.				
Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:				
	No Assessn	nent methods (components, activities)	Weight		
			(percentage)		
	1 Final Ex	xamination	20 - 30%		
	2 Mid-Te	rm Examination	20 - 30%		
	3 Class A	ctivities: Quiz, Homework, etc.	50 - 55%		
	Minimum final r	nark to pass : B			
Media employed	Whiteboard, screen, laptop.				
Reading list	Papers and references related to the research.				

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V		V	v
CO 2	V	V	V		V	V
CO 3	V	V	V		V	V
CO 4	V	V	V		V	V

Compilation Date

September 13th 2023

Modified Date : February 6th 2024

: