

Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 E:mail: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp Email : +62 274 552243 : maths3ugm.ac.id; kaprodi-S3-matematika.mipa@ugm.ac.id Website : http://s3math.fmipa.ugm.ac.id

Module Name	Topic on Finance and Actuarial Science A
Code, if applicable	MMM 7422
Subtitle, if applicable	
Semester(s) in which the module is taught	1 st or 2 nd semester
The person responsible for the module	Chair of Statistics Laboratory
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, classroom discussion, flipped classroom.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes of structured activities per week, 120 minutes of individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Required and recommended prerequisites for joining the module	-
Module objectives/intended learning outcomes	On successful completion of this course, students should be able to: CO 1 master the Characteristics of the Actuarial Model CO 2 master the Aggregate loss model CO 3 perform the Construction of the Empirical model CO 4 perform Credibility

Content	Characteristics of Actuarial Model, Aggregate loss model, Construction of Empirical model, Credibility				
Examination forms	oral presentation and essay.				
Study and examination	The final mark will be weighted as follows:				
requirements	Assessment methods	Weight			
	(components, activities)	percentage)			
	1 Final Examination (portfolio/essay/oral presentation)	35%			
	2 Mid-Term Examination (portfolio/essay/presentation)	35%			
	3 Class Activities: Presentation 30%				
	To pass the course, the minimum grade is B.				
Media employed	online platforms, Learning management systems, LCD projectors, and whiteboards.				
Reading list	Klugman, S. A., Panjer H. H., and Willmot G. E., 2019, Loss Models: From Data to Decisions, Fifth Edition, John Wiley & Sons, Inc.				

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V				v	v
CO 2	v	v			v	v
CO 3	v		v		v	v
CO 4	v			v	v	v

Compilation Date	:	2/1/2023
Modified Date	:	1/2/2024

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Doctor in Mathematics

Doctor	in Mathematics
Telp	: +62 274 552243
Email	: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id
Website	: http://s3math.fmipa.ugm.ac.id/

Module name:	Topics in Financial Statistics and Actuarial Science A
Code, if applicable:	MMM-7422
Subtitle, if applicable	Analysis of Claims Reserves
Semester(s) in which the	1 st or 2 nd Semester
module is taught:	
Person responsible for the	Chair of The Study Program
module:	
Language:	Bahasa Indonesia
Relation to curriculum:	Compulsary Courses
Type of teaching,	Lecture, project
contact hours:	
Workload (incl. contact hours, self-study hours)	The total workload is 232 hours per semester, which consists of 50 minutes of lectures per week, 120 minutes of structured activities per week, and 120 minutes of individual attude per week in total is 16 marks per semester including mid and final arguments.
	study per week, in total is 16 weeks per semester, including mid and final exams.
Credit points:	3
Required and recommended	Before taking this course, the students must have a good understanding in actuarial
prerequisites for joining the	risk theory
module	
Module objectives/intended	On satisfying the requirements of this course, students will have the knowledge
learning outcomes:	and skills to:
	CO-1: Students will comprehend basic methods in claim reserving and will be able
	to evaluate:
	 the concepts of claim reserving
	 claim reserve using some basic methods, such as chain ladder and Bornhuetter–Ferguson.
	• a run-off triangle representation in incremental or cumulative form CO-2: Able to evaluate concepts associated with Bayesian method as well as their applications
	• the concepts of Bayesian method
	 claim reserve using some Bayesian methods, such as Benktander- Hovinen and Cape–Cod
	CO-3: Students analyse key concepts of special chain ladder method and their applications.
	 the concepts of special chain ladder methods such as Munich chain ladder
	• claim reserve using special chain ladder method
Content:	The purpose of this course is to develop knowledge of the methods in calculating claim reserve
	• Fundamental properties of the claims reserving process
	Basic Methods: Chain-ladder, Bornhuetter–Ferguson method
	 Classical CL model
	 Benktander–Hovinen method and Cape–Cod model
	Denktanger-riovinen meurioù and Cape-Cou moder

Study and examination	The final mark will be weighted as follows:				
requirements and forms of		Weight (percentage)			
examination:	1 Formulation the originality of research problem	25%			
	2 Formulation the theoritical framework	25%			
	3 Formulation the conjecture and metodhology	20%			
	4 Presentation	30%			
	Minimum final mark to pass : B				
Media employed:	White/Black Board, LCD Projector, Laptop/Computer				
Reading List:	The related references to the dissertation will be non	ninated as per the selected			
	topic and content.				
	General references:				
	1. Wuthrich, M.V., Merz, M (2008) Stochastic Claims Reserving Methods in				
	Insurance, John Wiley & Sons				

Mapping of The COs and PLOs

	PLO – 1 S3 Mat	PLO – 2 S3 Mat	PLO – 3 S3 Mat	PLO – 4 S3 Mat	PLO – 5 S3 Mat	PLO –6 S3 Mat
CO 1	V	V	V		V	V
CO 2	V	V	V		V	V
CO 3	V	V	V		V	V

Modified Date

February 10th 2024

:

Fakultas Matematika dan Ilmu Pengetahuan Alam Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: maths2@ugm.ac.id Website: http://s2math.fmipa.ugm.ac.id/

Doctor in	Mathematics
Telp	: +62 274 552243
Email	: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
Website	: http://s2math.fmipa.ugm.ac.id/

Module Name	Topic on Finance and Actuarial Science A
Code, if applicable	MMM 7422
Subtitle, if applicable	Advanced Mathematics financial
Semester(s) in which the module is	3 rd semester
taught	
The person responsible for the	Chair of Statistics Laboratory
module	· · · · · · · · · · · · · · · · · · ·
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, classroom discussion, flipped classroom.
Workload (incl. contact hours, self- study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes of structured activities per week, 120 minutes of individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Required and recommended prerequisites for joining the module	Students have learned financial mathematics, numeric methods, optimization theory
Module objectives/intended learning outcomes	After completing this course, the students have ability to: CO1. analyze the use of financial mathematics related to the doctoral research being studied
	CO2. master annuity theory related to the doctoral research being studied
	CO3.combine financial mathematics and annuity theory related to the doctoral research being studied
Silabus	Preliminaries on Financial Markets
	The Time Value of Money
	Bond Valuation
	Portfolio Theory
	Markowitz Portfolio Theory
	Capital Market Theory and Portfolio Risk Measures
	Binomial Trees and Security Pricing Modeling
	Stochastic Calculus and Geometric Brownian Motion Model
	Derivatives: Forwards, Futures, Swaps, and Options
	The BSM Model and European Option Pricing,
	Simulation in Option Valuation
Examination forms	oral presentation and essay.

Study and examination requirements	The final mark will be weighted as follows:					
	Weight(percentage)					
	Final Examination (portfolio/essay/oral presentation)60%Mid-Term Examination (portfolio/essay/presentation)15%Class Activities: Presentation25%					
	To pass the course, the minimum grade is B.					
Media employed	online platforms, Learning management systems, LCD projectors, and whiteboards.					
Reading list	 Kellison, S. G., 1991. <i>The Theory of Interest,</i> John Wiley & Sons. New York. Yuh-Dauh Lyuu, 2004. <i>Financial Engineering and Computation</i>. Cambridge University Press, United Kingdom. Sergio M. Focardi (Author), Frank J. Fabozzi (Author), 2004. The Mathematics of Financial Modeling and Investment Management 1st Edition, Wiley. <u>Arlie O. Petters</u>, Xiaoying Dong, 2016. An Introduction to Mathematical Finance with Applications, Springer New York, NY 					

CO and PLO mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v		v			
CO 2	v	v				
CO 3	v					v

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Doctor in Mathematics

Telp: +62 274 552243Email: mathS2@ugm.ac.id;Website: http://S2math.fmipa.ugm.ac.id

MODULE HANDBOOK Doctoral in Mathematics

Topics in Einspecial Statistics and Actuarial Science A				
Topics in Financial Statistics and Actuarial Science A MMM-7422				
Advanced Actuarial Mathematics				
1 st or 2 nd Semester				
Chair of Lab. Statistics				
Bahasa Indonesia				
Compulsary Courses				
Lecture, project				
The total workload is 232 hours per semester, which consists of 50 minutes of lectures				
per week, 120 minutes of structured activities per week, and 120 minutes of individual				
study per week, in total is 16 weeks per semester, including mid and final exams.				
3				
Before taking this course, the students must have a good understanding in financial				
mathematics such as interest theory and annuities.				
maticifiates such as interest theory and annulues.				
On satisfying the requirements of this course, students will have the knowledge				
and skills to:				
CO-1: Analyze theory of benefit reserves including:				
• the concepts of benefit reserve and their application in actuarial science				
• benefit reserve either in discrete form or in continuous				
• formulation of benefit reserve for various life insurance products				
CO-2: Able to analyze concepts associated with insurance model including				
expenses, as well as their applications:				
• the concepts of expenses in life insurance				
• gross premium for several insurance contracts				
CO-3: Evaluate and analyze concepts of multi life and multi decrement model,				
including:				
• the concepts of multi life and multi decrement model				
 some probabilistic quantities based on multi life and multi decrement 				
• some probabilistic quantities based on multi-interand multi-decrement model.				
• the principle of premium calculation such as equivalence or exponential				
premium.				
The purpose of this course is to develop knowledge of the fundamental actuarial				
tools for quantitatively assessing risk. The application of these tools to problems				
encountered in actuarial science is emphasized. A thorough command of the				
supporting calculus is assumed.				
Benefit Reserve				
Insurance model including expenses				
Multi life model				
Multi decrement model				

Study and examination	The final mark will be weighted as follows:			
requirements and forms of examination:	 Formulation the originality of research problem Formulation the theoritical framework Formulation the conjecture and metodhology Presentation 	Weight (percentage) 25% 25% 20% 30%		
Media employed:	Minimum final mark to pass : B White/Black Board, LCD Projector, Laptop/Computer			
Reading List:	The related references to the dissertation will be nominated as per the selected topic and content.			
	 General references: 1. Bower, et.al (1999) Actuarial Mathematics, Society of Actuaries, Schaumburg, Illinois 2. <u>www.aktuaris.org</u> 3. <u>www.soa.org</u> 			

Mapping of The COs and PLOs

	PLO – 1 S3 Mat	PLO – 2 S3 Mat	PLO – 3 S3 Mat	PLO – 4 S3 Mat	PLO – 5 S3 Mat	PLO –6 S3 Mat
CO 1	V	V	v		V	V
CO 2	V	V	v		V	V
CO 3	V	V	V		V	V

Compilation Date : 8/9/2022

Modified Date : 10/2/2024

Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

 Telp
 : +62 274 552243

 Email
 : maths2@ugm.ac.id;

Website : <u>http://s2math.fmipa.ugm.ac.id</u>

Module Name	Topic on Finance and actuarial science A
Code, if applicable	MMM 7422
Subtitle, if applicable	Financial Modelling
Semester(s) in which the module is taught	1st or 2nd Semester
Person responsible for the module	Chair of Statistics Laboratory
Language	Bahasa Indonesia
Relation to curriculum	Elective <i>course</i>
Teaching methods	Lecture, project.
Workload (incl. contact hours, self-study hours)	3 hours lectures, 6 hours individual study, 14 weeks per semester, and total 126 hours a semester
Credit points	3
Required and recommended prerequisites for joining the module	-

Module objectives/intended learning outcomes	 On successful completion of this course, students should be able to: CO 1 Master stock price model CO 2 Analyze European and American options CO 3 Master Valuation of European and American options CO 4 Develop option pricing 			
Content	Stock price model, European and American options, Valuation of European and American options, Application of option pricing			
Examination forms	oral presentation and essay.			
Study and examination requirements	The weight of assignments will be as follows:1. Quiz, homework, presentation30%2. Mid-semester exam35%3. Final exam35%Minimum final mark to pass : B			
Media employed	online platforms, Learning management systems, LCD projectors, and whiteboards.			
Reading list	 Shreve, S. E., 2004, Stochastics Calculus for Finance I, Springer Verlag New York. LLC. Shreve, S. E., 2004, Stochastics Calculus for Finance II, Springer Verlag New York. LLC. . 			

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v					v
CO 2	v	v				V
CO 3	v		v			V
CO 4	V			V		V

Compilation Date	:	4/9/2023
Modified Date	:	10/2/2024