

Faculty of Mathematics and Natural Sciences

Department of Mathematics

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Doctor in Mathematics

Telp	: +62 274 552243
Email	: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id
Website	: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name:	Topics in Financial Statistics and Actuarial Science B				
Code, if applicable:	MMM 7423				
Subtitle, if applicable					
Semester(s) in which the	1 st or 2 nd semester				
module is taught:					
Person responsible for the	Chair of Statistics Research Group				
module:					
Language:	Bahasa Indonesia				
Relation to curriculum:	Elective Course				
Teaching methods	Lecture, classroom discussion, project-based learning.				
Workload (incl. contact hours,	Total workload is 232 hours per semester, which consists of 50 minutes				
self-study hours)	lectures per week, 120 minutes of structured activities per week, 120 minutes				
	of individual study per week, in total is 16 weeks per semester, including mid				
	exam and final exam.				
Credit points in Credit Units	3				
Required and recommended	The student has a strong grasp of the fundamentals of Financial and Actuarial				
prerequisites for joining the	Statistics				
module					
Module objectives/intended	After completing this course the students have ability to:				
learning outcomes:	CO 1. Mastery of the advancements in financial and actuarial mathematics.				
	CO 2. Mastery of the advancements in financial and actuarial statistics.				
	CO 3. Mastery of the advancements in modeling in the field of Finance and				
	Actuarial Science				
Content	1 Claim Processes and Basic Methods (CL BE Poisson model Algorithm				
content.	CL) Claim with Chain Ladder Model Claim with Bayesian Model Claim				
	with Distributional Model. Claim with GLM. Claim with Bootstran				
	Method Multivariate Reserve Method and Other Topics				
	2 Asset pricing models. European and American entions. Parrier entions				
	2. Asset pricing models, European and American options, Barrier options.				
	3. Introduction to modeling, random variables, distribution measures,				
	parameters, and their role in tail distribution, construction of new				
	distributions, discrete and continuous distributions, insurance benefit				
	models: deductibles, coinsurances, policy limits, consequences of				
	insurance models, aggregate loss models, process models in insurance,				
	discrete loss probabilities and finite time, adjustment coefficient,				
	Lundberg's inequalities, integro-differential equations, maximum				
	aggregate loss, Brownian motion risk processes, Brownian motion and				
	loss probabilities.				
	4. The course syllabus will be tailored to the specific research topics of the				
	students.				

Examination forms	Oral presentation, essay, paper					
Study and examination	The final mark will be weighted as follows:					
examination:	No	Assessment methods	Weight			
		(components, activities)	(percentage)			
	1	Final Examination (portfolio/essay/oral presentation)	35%			
	2	Mid-Term Examination (portfolio/essay/presentation)	35%			
	3	Class Activities: Presentation	30%			
	ass the course, the minimum grade is B.					
Media employed:	Board	d, LCD Projector, Laptop/Computer				
Reading List:	1. 1	W thrich, M.V., Merz,M., Stochastic Claim F	Reserving Methods in			
		Insurance (2008), John Wiley & Sons.				
	2.	Higham, D. (2004). An introduction to finan	cial option valuation:			
	mathematics, stochastics and computation, volume 13. Cambridge					
	University Press.					
	3.	3. Shreve, S. (2012). Stochastic calculus for finance I: the binomial asset				
	pricing model. Springer.					
	4.	4. Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time				
	1	models. Springer, New York.				
	5. Klugman, S. A., Panjer, H. H., dan Willmot G. E. (2012), Loss Model: From					
	Data to Decision 4 th edition, Wiley.					

Mapping of The COs and PLOs

	PLO – 1	PLO – 2	PLO – 3	PLO-4	PLO-5	PLO –6
	S3 Mat	S3 Mat	S3 Mat	S3 Mat	S3 Mat	S3 Mat
CO 1	V	V	V		v	
CO 2	V	V	V		V	
CO 3	V	V	v		v	v

Last Modified Date : February 10, 2024

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp	: +62 274 552243
Email	: maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id
Website	: http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name:	Topics in Financial Statistics and Actuarial Science B			
Code, if applicable:	MMM 7423			
Subtitle, if applicable	Risk Management			
Semester(s) in which the	1 st or 2 nd semester			
module is taught:				
Person responsible for the	Chair of Statistics Research Group			
module:				
Language:	Bahasa Indonesia			
Relation to curriculum:	Elective Course			
Teaching methods	Lecture, classroom discussion, project-based learning.			
Workload (incl. contact hours,	Total workload is 232 hours per semester, which consists of 50 minutes			
self-study hours)	lectures per week, 120 minutes of structured activities per week, 120 minutes			
	of individual study per week, in total is 16 weeks per semester, including mid			
	exam and final exam.			
Credit points in Credit Units	3			
Required and recommended	Students have learned some basic courses in statistics and statistical			
prerequisites for joining the	mathematics course.			
module	Students also have some knowledge on statistical software, such as D			
	Stutents also have some knowledge on statistical software, such as h.			
Module objectives/intended	After completing this course the students have ability to:			
learning outcomes:	CO 1 analyze the theoretical aspect of Risk Management related to the			
	doctoral research being studied			
	CO 2. use software for doing Risk Management related to the doctoral			
	research being studied			
	CO 3. analyze some extended Risk Management models and methods related			
	to the doctoral research being studied			
Content:	It will be derived from the research topic of the students. It will be focused			
	on the theory, models, and method of specific data analysis used in the			
	student research.			
Evamination forms	Oral procentation account paper			
	oral presentation, essay, paper			
Study and examination requirements and forms of	The final mark will be weighted as follows:			
examination:	Assessment methods Weight			
	NO (components, activities) (percentage)			
	1 Einal Examination (nortfolio/ossay/oral 25%			
	presentation)			
	2 Mid-Term Examination 35%			
	(portfolio/essay/presentation)			
	3 Class Activities: Presentation 30%			
	To pass the course, the minimum grade is B.			

Media employed:	Board, LCD Projector, Laptop/Computer				
Reading List:	 Christoffersen, 2003, Elements of Financial Risk Measurements, Academic Press Dowd, K., 2005, An introduction to market risk measurement, 2nd eds., Wiley Recent publications on Risk Management, related to the research 				

Mapping of The COs and PLOs

	PLO – 1 S3 Mat	PLO – 2 S3 Mat	PLO – 3 S3 Mat	PLO – 4 S3 Mat	PLO – 5 S3 Mat	PLO –6 S3 Mat
CO 1	V	V	V		V	
CO 2	v	V	V		V	
CO 3	V	v	V		V	v

Last Modified Date : February 10, 2024

Fakultas Matematika dan Ilmu Pengetahuan Alam

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: maths2@ugm.ac.id Website: http://s2math.fmipa.ugm.ac.id/

Doctor in Mathematics

 Telp
 : +62 274 552243

 Email
 : maths3@ugm.ac.id; kaprodi-s3-matematika.mipa@ugm.ac.id

 Website
 : http://s3math.fmipa.ugm.ac.id/

MODULE HANDBOOK Doctoral in Mathematics

Module name:	Topics in Financial Statistics and Actuarial Science B					
Code, if applicable:	MMM 7423					
Subtitle, if applicable	Portfolio Management					
Semester(s) in which the	3					
module is taught:						
Person responsible for	Chief of the Statistics Laboratory					
the module:						
Language:	Indonesian					
Relation to curriculum:	Elective courses					
Teaching methods:	Lecture, project.					
Workload (incl. contact	The total workload is 232 hours per semester, which consists of 50 minutes of					
hours, self-study hours)	lectures per week, 120 minutes of structured activities per week, and 120 minutes of					
	individual study per week, in total is 16 weeks per semester, including mid and final					
	exams.					
Credit points:	3					
Required and	To take this course students must already understand a level of mathematical					
recommended	statistics, optimization theory and numerical methods.					
prerequisites for joining						
the module						
Module	After completing this course students will be able to:					
objectives/intended	CO1 Analyze methods in portfolio allocation					
learning outcomes:	CO2 Integrate investment theory and practice and analyze them.					
	JO3 Developing open problem ideas for research in the field of					
Content:	 Introduction to investment Investment principles Asset management is risk-free 					
content.	Asset investment is risky. Investment Models.					
	 Random variables and their characteristic properties in portfolio theory. 					
	• Introduction to portfolio theory. Efficient Portfolio.					
	• Two-asset portfolio.					
	• Markowitz model portfolio, two fund theorem model.					
	 Lagrange function in portfolio optimization. 					
	• Portfolio Mean Variance, Portfolio Mean Variance Skewness, Portfolio Mean					
	Variance Skewness Kurtosis.					
	• CAPM model.					
	• Multiobjective portfolio model.					
	 Monte Carlo simulation for portfolio theory. 					
	 Resampling method (REF) in portfolios. 					
	• Robust Method in Portfolio.					
	 Data analysis using Eviews, K, Python software. Credes are based on a combination of 2 system (mid and final system). 2 assignments 					
Study and examination	or and one project with the following assessment proportions:					
requirements and forms	60%: Combination of two exams					
or examination;	15%: Combination of two tasks					
	25%: Projects (including writing papers and presentations)					
	, , , , , , , , , , , , , , , , , , , ,					
	To pass the course, the minimum grade is B					

	1
Media employed:	Slides and LCD projectors, White boards
Reading List:	• Ernest Brown Skinner, 2015. The Mathematical Theory of Investment, Sagwan
	Press.
	• Samuel A. Broverman, 2017, Mathematics of Investment & Credit, SR Books Inc.
	• Andrew T Adam, Investment Mathematics, John Wiley and Sons, 2003
	• David G. Luenberger, Investment Science, Oxford University Press, 1998
	• An Introduction to Financial Option Valuation, Mathematics, Stochastics and
	Computation, Second Edition, Cambridge University Press 2004.

00		•
()	and PLO	manning
$\overline{\mathbf{U}}$		mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	v	v			
CO 2	V	V		V		
CO 3	v	V			V	v

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Doctor in Mathematics

Telp: +62 274 552243Email: maths3@ugm.ac.id;Website: http://s3math.fmipa.ugm.ac.id

MODULE HANDBOOK Doctoral in Mathematics

Module name:	Topics in Financial Statistics and Actuarial Science B				
Code, if applicable:	MMM 7423				
Subtitle, if applicable	Health Insurance				
Semester(s) in which the	1 st or 2 nd Semester				
module is taught:					
Person responsible for the	Chair of Lab. Statistics				
module:					
Language:	Bahasa Indonesia				
Relation to curriculum:	Elective course				
Credit points:	3				
Type of teaching,	Lecture, project.				
contact hours:					
Workload (incl. contact hours,	The total workload is 232 hours per semester, which consists of 50 minutes of lectures				
self-study hours)	per week, 120 minutes of structured activities per week, and 120 minutes of individual				
	study per week, in total is 16 weeks per semester, including mid and final exams.				
Credit points in Credit Units	3				
Required and recommended	Before taking this course, the students must have a good understanding in Actuarial				
prerequisites for joining the	mathematics				
module					
Module objectives/intended	On satisfying the requirements of this course, students will have the knowledge				
learning outcomes:	and skills to:				
-	CO-1: Able to analyze the types of health insurance products with their actuarial				
	models				
	CO-2: Able to evaluate and use the claim frequency model, claim severity and				
	collective risk models in health insurance.				
	CO-3: Able to analyze the use of mortality, morbidity and multi-status models in				
	health insurance.				
	CO-4: Able to analyze actuarial models that can be used in the collective risk				
	CO 5: Dovelop a health insurance product with its activatial model based on real				
	co-s: Develop a health insurance product with its actuarial model based of real				
Content	Health Insurance Products: Model claim frequency and claim severity: Mortality				
Content.	Morbidity and Multi-status Models: Collective Risk Model: Actuarial models				
	related to National Health Insurance				
Study and examination	The final mark will be weighted as follows:				
requirements and forms of	Ŭ Š				
examination:	Weight (percentage)				
	1. Formulation of the originality of the research problem 25%				
	2. Formulation of the theoretical framework 25%				
	3. Formulation of the conjecture and methodology 20%				
	4. Presentation 30%				
	To pass the course, the minimum grade is B.				
Media employed:	White/Black Board, LCD Projector, Laptop/Computer				

Reading List:	The related references to the dissertation will be nominated as per the selected topic and content.
Reading List:	 General references: 1. Cichon, M, Newbrander, W, Yamabana, H., Weber, A., Normand, C., Dror, D. and Preker, A., 1999, <i>Modelling in Health Care Finance</i>, International Labour Organization, Geneva 2. Cunningham, R. J., Herzog, T. N and London, R. L. , 2006, <i>Models for Quantifying Risk</i>, 2nd ed., ACTEX Publications, Inc. 3. Pitacco, E., 2014, <i>Health Insurance. Basic Actuarial Models</i>, Springer.

Mapping of The COs and PLOs

	PLO – 1 S3 Mat	PLO – 2 S3 Mat	PLO – 3 S3 Mat	PLO – 4 S3 Mat	PLO – 5 S3 Mat	PLO –6 S3 Mat
CO 1	V	V	V		V	v
CO 2	V	V	V		V	V
CO 3	V	V	V		V	V
CO 4	V	V	v		v	v
CO 5	v	v	V		V	V

Compilation Date	:	9/4/2023
Modified Date	:	10/2/2024

Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Doctor in Mathematics

Telp Email : +62 274 552243 : maths3ugm.ac.id; kaprodi-S3-matematika.mipa@ugm.ac.id Website : http://s3math.fmipa.ugm.ac.id

MODULE HANDBOOK

Module Name	Topic on Finance and actuarial science B
Code, if applicable	MMM 7423
Subtitle, if applicable	Option Theory
Semester(s) in which the module is taught	1 st or 2 nd semester
Person responsible for the module	Chair of Statistics Laboratory
Language	Bahasa Indonesia
Relation to curriculum	Elective course
Teaching methods	Lecture, classroom discussion, flipped classroom.
Workload (incl. contact hours, self-study hours)	Total workload is 232 hours per semester, which consists of 50 minutes lectures per week, 120 minutes of structured activities per week, 120 minutes of individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points in Credit Units	3
Required and recommended prerequisites for joining the module	-
Module objectives/intended learning outcomes	On successful completion of this course, students should be able to: CO 1 master the Fundamentals of the Financial Model CO 2 perform European and American options CO 3 perform the Valuation of European and American options CO 4 perform Finite difference methods for the Black–Scholes PDE.

Content	Stock price model, European and American options, Valuation of European and American options, Application of option pricing, Finite difference methods for the Black–Scholes PDE.			
Examination forms	oral presentation and essay.			
Study and examination	The final mark will be weighted as follows:			
requirements	Assessment methods	Weight		
	(components, activities)	(percentage)		
	1 Final Examination (portfolio/essay/oral presentation)	35%		
	 Mid-Term Examination (portfolio/essay/presentation) 	35%		
	3 Class Activities: Presentation	30%		
	To pass the course, the minimum grade is B.			
Media employed	online platforms, Learning management systems, LCD projectors, and whiteboards.			
Reading list	1. Kellison, S. G., 1991. The Theory Wiley & amp: Sons New York	of Interest, John		
	 Shreve, S. E., 2004, Stochastics Calconstruction Springer Verlag New York, LLC. 	ulus for Finance I,		
	 Shreve, S. E., 2004, Stochastics Calcu Springer Verlag New York. LLC. 	ulus for Finance II,		
	4. Yuh-Dauh Lyuu, 2004. Financial Computation. CambridgeUniversit Kingdom.	Engineering and y Press, United		
	5. Higham, D. J., 2004, An Introduction Option Valuation, Cambridge University			

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v					
CO 2	v	v			v	v
CO 3	V		v			
CO 4	V		v		v	v
Compilation Date : 2/1/2023						

Modified Date : 30/1/2024