# Kurzweil-Stieltjes integral and its applications 

Milan Tvrdý

Institute of Mathematics, Academy of Sciences of the Czech Republic


Yogyakarta, December 2017


Thomas Joannes Stieltjes


Jaroslav Kurzweil

## 1. NOTATIONS

## Notations

- $-\infty<a<b<\infty$,
- function $f:[a, b] \rightarrow R$ is regulated on $[a, b]$, if $f(s+):=\lim _{\tau \rightarrow s+} f(\tau) \in \mathbb{R}$ for $s \in[a, b), f(t-):=\lim _{\tau \rightarrow t-} f(\tau) \in \mathbb{R}$ for $t \in(a, b]$.
- $\Delta^{+} f(s)=f(s+)-f(s), \Delta^{-} f(t)=f(t)-f(t-), \Delta f(t)=f(t+)-f(t-)$.
- $G[a, b]$ (resp. $G$ ) is the space of regulated functions on $[a, b]$. ( $G$ is Banach space with respect to the norm $\|f\|_{\infty}=\sup _{t \in[a, b]}\|f(t)\|$ ).
- $B V=B V[a, b]=\left\{f:[a, b] \rightarrow \mathbb{R}: \operatorname{var}_{a}^{b} f<\infty\right\}$ is the space of functions with bounded variation.
- function $f:[a, b] \rightarrow R$ is finite step function, if there is a division $a=\alpha_{0}<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}=b$ of $[a, b]$ such that $f$ is constant on every $\left(\alpha_{j-1}, \alpha_{j}\right)$,
$S[a, b]$ (or $S$ ) is the set of finite step functions on $[a, b]$.
- Regulated functions are uniform limits of finite step functions, they have at most countably many points of discontinuity.
Every function $f$ of bounded variation is a difference $f=g-h$ of nondecreasing functions $g$ and $h$.
- $S[a, b] \subset B V[a, b] \subset G[a, b]$.


## 2. DEFINITION OF KS INTEGRAL

## Definition of KS integral

## Notation

- Positive functions $\delta:[a, b] \rightarrow(0, \infty)$ are gauges on $[a, b]$.
- Couples $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ of ordered finite sets are partitions of $[a, b]$ if $\boldsymbol{\alpha}=\left\{\alpha_{0}<\alpha_{1}<\ldots<\alpha_{\nu(P)}=b\right\}$ is a division of $[a, b]$ and $\boldsymbol{\xi}=\left\{\xi_{1}, \ldots, \xi_{\nu(P)}\right\}$ are its tags, i.e. $\xi_{j} \in\left[\alpha_{j-1}, \alpha_{j}\right]$ for all $j$.
- $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ is $\delta$-fine if $\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\xi_{j}-\delta\left(\xi_{j}\right), \xi_{j}+\delta\left(\xi_{j}\right)\right)$ for all $j$.
- For $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}, P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ we set

$$
S(f, d g, P)=\sum_{j=1}^{\nu(P)} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

## Definition

$$
\begin{aligned}
& I=\int_{a}^{b} f d g \quad \Longleftrightarrow\left\{\begin{array}{l} 
\\
\text { for every } \delta-
\end{array}\right. \\
& \int_{c}^{c} f d g=0, \quad \int_{b}^{a} f d g=-\int_{a}^{b} f d g .
\end{aligned}
$$

## Definition of the KS integral

- KS integral has usual linear properties and is an additive function of intervals.
- $\int_{a}^{b} f d g \in \mathbb{R} \Longrightarrow\left|\int_{a}^{b} f d g\right| \leq\|f\|_{\infty}\left(\operatorname{var}_{a}^{b} g\right), \quad\left|\int_{a}^{b} f d g\right| \leq 2\|f\|_{B V}\|g\|_{\infty}$.
- RS $\subset K S$.


## Definition of the KS integral

- KS integral has usual linear properties and is an additive function of intervals.
- $\int_{a}^{b} f d g \in \mathbb{R} \Longrightarrow\left|\int_{a}^{b} f d g\right| \leq\|f\|_{\infty}\left(\operatorname{var}_{a}^{b} g\right), \quad\left|\int_{a}^{b} f d g\right| \leq 2\|f\|_{B V}\|g\|_{\infty}$.
- RS $\subset K S$.
- $f \in G[a, b], g \in G[a, b] \Longrightarrow$

Both integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist if one of the functions $f, g$ is a finite step function.

## 3. FINITE STEP FUNCTIONS

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{m-1}<\xi_{m}=\alpha_{m}=\tau$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{m-1}<\xi_{m}=\alpha_{m}=\tau$
$\Longrightarrow S(P)=\left[g(\tau)-g\left(\alpha_{m-1}\right)\right] \rightarrow[g(\tau)-g(\tau-)]$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{m-1}<\xi_{m}=\alpha_{m}=\tau$
$\Longrightarrow S(P)=\left[g(\tau)-g\left(\alpha_{m-1}\right)\right] \rightarrow[g(\tau)-g(\tau-)] \Longrightarrow \int_{a}^{\tau} f d g=g(\tau)-g(\tau-)$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{m-1}<\xi_{m}=\alpha_{m}=\tau$

$$
\begin{aligned}
& \Longrightarrow S(P)=\left[g(\tau)-g\left(\alpha_{m-1}\right)\right] \rightarrow[g(\tau)-g(\tau-)] \Longrightarrow \int_{a}^{\tau} f d g=g(\tau)-g(\tau-) \\
& \Longrightarrow \int_{a}^{b} f d g=g(b)-g(\tau)+g(\tau)-g(\tau-)
\end{aligned}
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{m-1}<\xi_{m}=\alpha_{m}=\tau$

$$
\begin{aligned}
& \Longrightarrow S(P)=\left[g(\tau)-g\left(\alpha_{m-1}\right)\right] \rightarrow[g(\tau)-g(\tau-)] \Longrightarrow \int_{a}^{\tau} f d g=g(\tau)-g(\tau-) \\
& \Longrightarrow \int_{a}^{b} f d g=g(b)-g(\tau)+g(\tau)-g(\tau-)=g(b)-g(\tau-)
\end{aligned}
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{a}^{b} f d g=g(b)-g(\tau-)$.


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$,
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$,
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+) .
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\begin{array}{ll}
\int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), & \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+), \\
\int_{a}^{b} \chi_{[a, \tau]} d g=g(\tau+)-g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} d g=g(\tau-)-g(a) .
\end{array}
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$,
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$,
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+), \\
& \int_{a}^{b} \chi_{[a, \tau]} d g=g(\tau+)-g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} d g=g(\tau-)-g(a), \\
& \int_{a}^{b} \chi_{[\tau]} d g= \begin{cases}g(b)-g(b-) & \text { for } \tau=b, \\
g(\tau+)-g(\tau-) & \text { for } \tau \in(a, b), \\
g(b)-g(b-) & \text { for } \tau=b,\end{cases}
\end{aligned}
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$,
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$,
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+), \\
& \int_{a}^{b} \chi_{[a, \tau]} d g=g(\tau+)-g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} d g=g(\tau-)-g(a), \\
& \int_{a}^{b} \chi_{[\tau]} d g= \begin{cases}g(b)-g(b-) & \text { for } \tau=b, \\
g(\tau+)-g(\tau-) & \text { for } \tau \in(a, b), \\
g(b)-g(b-) & \text { for } \tau=b,\end{cases}
\end{aligned}
$$

- $f:[a, b] \rightarrow \mathbb{R} \quad \tau \in[a, b] \Longrightarrow$

$$
\begin{gathered}
\int_{a}^{b} f d \chi_{[a, \tau]}=\int_{a}^{b} f d \chi_{[a, \tau)}=-f(\tau), \quad \int_{a}^{b} f d \chi_{[\tau, b]}=\int_{a}^{b} f d \chi_{(\tau, b]}=f(\tau), \\
\int_{a}^{b} f d \chi_{[\tau]}= \begin{cases}-f(a) & \text { for } \tau=a, \\
0 & \text { for } \tau \in(a, b) \\
f(b) & \text { for } \tau=b\end{cases}
\end{gathered}
$$

## 4. EXISTENCE OF KS INTEGRAL

## Existence of the KS integral

- $f \in G[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of the functions $f, g$ is a finite step function.


## Existence of the KS integral

- $f \in G[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of the functions $f, g$ is a finite step function.
- If - $f, f_{k} \in G[a, b], g \in B V[a, b]$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f$,
then $\int_{a}^{b} f_{k} d g \rightarrow \int_{a}^{b} f d g$.


## Existence of the KS integral

- $f \in G[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of the functions $f, g$ is a finite step function.
- If - $f, f_{k} \in G[a, b], g \in B V[a, b]$ for $k \in \mathbb{N}$,
- $f_{k} \rightrightarrows f$,
then $\int_{a}^{b} f_{k} d g \rightarrow \int_{a}^{b} f d g$.
- $f \in G[a, b], g \in B V[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.


## Existence of the KS integral

- $f \in G[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of the functions $f, g$ is a finite step function.
- If - $f, f_{k} \in G[a, b], g \in B V[a, b]$ for $k \in \mathbb{N}$,
- $f_{k} \rightrightarrows f$,
then $\int_{a}^{b} f_{k} d g \rightarrow \int_{a}^{b} f d g$.
- $f \in G[a, b], g \in B V[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.
- If - $f \in B V[a, b], g, g_{k} \in G[a, b]$ for $k \in \mathbb{N}$,
- $\quad g_{k} \rightrightarrows g$,
then $\int_{a}^{b} f d g_{k} \rightarrow \int_{a}^{b} f d g$ on $[a, b]$.


## Existence of the KS integral

- $f \in G[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of the functions $f, g$ is a finite step function.
- If - $f, f_{k} \in G[a, b], g \in B V[a, b]$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f$,
then $\int_{a}^{b} f_{k} d g \rightarrow \int_{a}^{b} f d g$.
- $f \in G[a, b], g \in B V[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.
- If - $f \in B V[a, b], g, g_{k} \in G[a, b]$ for $k \in \mathbb{N}$,
- $g_{k} \rightrightarrows g$,
then $\int_{a}^{b} f d g_{k} \rightarrow \int_{a}^{b} f d g$ on $[a, b]$.
- $f \in B V[a, b], g \in G[a, b] \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.


## Sketch of the proof

Let $\varepsilon>0$ be given.
Choose finite step functions $g_{k}$ in such a way that $g_{k} \rightrightarrows g$ on $[a, b]$.
Let $\left\|g_{k}-g_{\ell}\right\|_{\infty}<\varepsilon$ for $k, \ell \geq k_{0}$.
Then

$$
\left|\int_{a}^{b} f d\left[g_{k}-g_{\ell}\right]\right| \leq 2\left\|g_{k}-g_{\ell}\right\|_{\infty}\|f\|_{B V} \leq 4 \varepsilon\|f\|_{B V} \quad \text { for } k, \ell \geq k_{0}
$$

i.e. $\quad\left\{\int_{a}^{b} f d g_{k}\right\}$ is Cauchy.

Hence $\lim _{k \rightarrow \infty} \int_{a}^{b} f d g_{k}=I \in \mathbb{R}$.
Choose $K \geq k_{0}$ and a gauge $\delta$ on $[a, b]$ in such a way that

$$
\left|\int_{a}^{b} f d g_{K}-l\right|<\varepsilon \text { and }\left|S\left(f, d g_{K}, P\right)-\int_{a}^{b} f d g_{K}\right|<\varepsilon \text { for every } \delta \text {-fine } P .
$$

Then

$$
\begin{aligned}
|S(f, d g, P)-I| & \leq\left|S(f, d g, P)-S\left(f, d g_{K}, P\right)\right|+\left|S\left(f, d g_{K}, P\right)-\int_{a}^{b} f d g_{K}\right| \\
& +\left|\int_{a}^{b} f d g_{K}-I\right|<2 \varepsilon\left(\|f\|_{B V+1)}\right.
\end{aligned}
$$

for every $\delta$-fine $P$.

## Existence of the KS integral

## Theorem

ASSUME: $f \in G[a, b], g \in G[a, b]$ and at least one of the functions $f, g$ has a bounded variation. THEN: both integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist.

## Existence of the KS integral

## Theorem

Assume: $f \in G[a, b], g \in G[a, b]$ and at least one of the functions $f, g$ has a bounded variation. THEN: both integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist.

- KS = PS.
- (LS) $\int_{[c, d]} f d g \in \mathbb{R} \Longrightarrow$

$$
\int_{c}^{d} f d g \in \mathbb{R} \quad \text { and } \quad(\mathrm{LS}) \int_{[c, d]} f d g=f(c) \Delta^{-} g(c)+\int_{c}^{d} f d g+f(d) \Delta^{+} g(d)
$$

## Existence of the KS integral

## Theorem

ASSUME: $f \in G[a, b], g \in G[a, b]$ and at least one of the functions $f, g$ has a bounded variation. THEN: both integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist.

- KS = PS.
- (LS) $\int_{[c, d]} f d g \in \mathbb{R} \Longrightarrow$

$$
\int_{c}^{d} f d g \in \mathbb{R} \quad \text { and } \quad(\mathrm{LS}) \int_{[c, d]} f d g=f(c) \Delta^{-} g(c)+\int_{c}^{d} f d g+f(d) \Delta^{+} g(d)
$$

- $\int_{a}^{b} f d g \in \mathbb{R}, a \leq c \leq d \leq b \Longrightarrow$

$$
\int_{a}^{b} f \chi_{[c, d]} d g=f(c) \Delta^{-} g(c)+\int_{c}^{d} f d g+f(d) \Delta^{+} g(d)
$$

## Existence of the KS integral

- If $f \in B V[a, b], g \in G[a, b], D$ is the set of discontinuity points of the function $f$ in $[a, b]$ and $f^{C}$ is continuous part of the function $f, f^{C}(a)=f(a)$, then

$$
\int_{a}^{b} f d g=\int_{a}^{b} f^{c} d g+\sum_{D}\left[\Delta^{-} f(d)(g(b)-g(d-))+\Delta^{+} f(d)(g(b)-g(d+))\right]
$$

## Existence of the KS integral

- If $f \in B V[a, b], g \in G[a, b], D$ is the set of discontinuity points of the function $f$ in $[a, b]$ and $f^{c}$ is continuous part of the function $f, f^{c}(a)=f(a)$, then

$$
\int_{a}^{b} f d g=\int_{a}^{b} f^{c} d g+\sum_{D}\left[\Delta^{-} f(d)(g(b)-g(d-))+\Delta^{+} f(d)(g(b)-g(d+))\right]
$$

- If $f \in G[a, b], g \in B V[a, b], D$ is the set of discontinuity points of the function $g$ in $[a, b]$ and $g^{C}$ is continuous part of the function $g, g^{C}(a)=g(a)$, then

$$
\int_{a}^{b} f d g=\int_{a}^{b} f d g^{c}+\sum_{D} f(d) \Delta g(d)
$$

where $\Delta g(a)=\Delta^{+} g(a)$ and $\Delta g(b)=\Delta^{-} g(b)$.

## 5. PROPERTIES OF KS INTEGRAL

## Convergence theorems

## ASSUME:

- $f, f_{k} \in G[a, b], \quad g \in B V[a, b]$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f$.

THEN: $\quad \int_{a}^{t} f_{k} d g \rightrightarrows \int_{a}^{t} f d g$ on $[a, b]$.

## Assume:

- $f \in B V[a, b], g, g_{k} \in G[a, b]$ for $k \in \mathbb{N}$,
- $\quad g_{k} \rightrightarrows g$.

THEN: $\int_{a}^{t} f d g_{k} \rightrightarrows \int_{a}^{t} f d g$ on $[a, b]$.

## Assume:

- $f, f_{k} \in G[a, b], g, g_{k} \in B V[a, b]$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f, \quad g_{k} \rightrightarrows g$,
- $\quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} g_{k}: k \in \mathbb{N}\right\}<\infty$.

THEN: $\quad \int_{a}^{t} f_{k} d g_{k} \rightrightarrows \int_{a}^{t} f d g \quad$ on $[a, b]$.

## Convergence theorems

## Theorem

## ASSUME:

- $f, f_{k} \in G[a, b], g, g_{k} \in B V[a, b]$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f, \quad g_{k} \rightrightarrows g$,
- $\quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} g_{k} ; k \in \mathbb{N}\right\}<\infty$.

THEN: $\int_{a}^{t} f_{k} d g_{k} \rightrightarrows \int_{a}^{t} f d g \quad$ on $[a, b]$.
Proof: Let $\varepsilon>0$, Choose $k_{0} \in \mathbb{N}$ and $\widetilde{\varphi} \in S[a, b]$ in such a way that

$$
\|f-\widetilde{\varphi}\|_{\infty}<\varepsilon / 2 \quad \text { and } \quad\left\|f_{k}-f\right\|_{\infty}<\varepsilon / 2, \quad\left\|g_{k}-g\right\|_{\infty}<\frac{\varepsilon}{2\|\widetilde{\varphi}\|_{B V}} \quad \text { for } k \geq k_{0}
$$

Then $k \geq k_{0} \Longrightarrow\left\|f_{k}-\widetilde{\varphi}\right\|_{\infty}<\varepsilon \quad$ and

$$
\begin{aligned}
& \left|\int_{a}^{t} f_{k} d g_{k}-\int_{a}^{t} f d g\right| \\
& \quad \leq\left|\int_{a}^{t}\left(f_{k}-\widetilde{\varphi}\right) d g_{k}\right|+\left|\int_{a}^{t} \widetilde{\varphi} d\left[g_{k}-g\right]\right|+\left|\int_{a}^{t}(\widetilde{\varphi}-f) d g\right| \\
& \quad \leq\left\|f_{k}-\widetilde{\varphi}\right\|_{\infty}\left(\operatorname{var}_{a}^{b} g_{k}\right)+2\|\widetilde{\varphi}\|_{B V}\left\|g_{k}-g\right\|_{\infty}+\|\widetilde{\varphi}-f\|_{\infty}\left(\operatorname{var}_{a}^{b} g\right) \\
& \quad \leq\left(\alpha^{*}+1+\frac{1}{2} \operatorname{var}_{a}^{b} g\right) \varepsilon=K \varepsilon \quad \text { for every } t \in[a, b]
\end{aligned}
$$

## Convergence theorems

## Bounded convergence (Osgood)

ASSUME: $f \in G[a, b],\left\{f_{n}\right\} \subset G[a, b]$ and

- $\left\|f_{n}\right\|_{\infty} \leq M<\infty$ for $n \in \mathbb{N}$,
- $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for $x \in[a, b]$.

THEN:

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g \quad \text { for every } g \in B V[a, b]
$$

Standard proof is based on
LEMMA (Arzelà) Let $\left\{\left\{J_{k, j}\right\}: k \in \mathbb{N}, j \in U_{k}\right\}$ be subintervals of $[a, b]$ such that:

- for each $k \in \mathbb{N}$, the set of indices $U_{k}$ is finite,
- the intervals from $\left\{J_{k, j}: j \in U_{k}\right\}$ are mutually disjoint,

$$
\sum_{j \in U_{k}}\left|J_{k, j}\right|>c>0
$$

Then there exist $\left\{k_{\ell}\right\} \subset \mathbb{N}$ and $\left\{j_{\ell}\right\} \subset \mathbb{N}$ such that

$$
j_{\ell} \in U_{k_{\ell}} \text { for } \ell \in \mathbb{N} \text { and } \bigcap_{\ell \in \mathbb{N}} J_{k_{\ell}, j_{\ell}} \neq \emptyset .
$$

## Variation over elementary sets

## DEFINITIONS

- For intervals $J \subset[a, b]$, the sets $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ such that

$$
\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m} \quad \text { and } \quad \alpha_{j} \in J \text { for } j=0,1, \ldots, m
$$

are divisions of $J . \quad \mathcal{D}(J)$ is the set of all divisions of $J$.

- For $f: J \rightarrow \mathbb{R}$ we put

$$
\operatorname{var}_{J} f=\sup \{V(f, D): D \in \mathcal{D}(J)\}, \quad \text { while } \operatorname{var}_{\emptyset} f=\operatorname{var}_{[c]} f=0 \quad \text { for } c \in[a, b]
$$

- A bounded subset $E$ of $\mathbb{R}$ is an elementary set if it is a finite union of intervals. For $A \subset \mathbb{R}, \mathcal{E}(A)$ is the set of all elementary subsets of $A$.
- A collection of intervals $\left\{J_{k}: k=1,2, \ldots, m\right\}$ is a minimal decomposition of $E$ if $E=\cup_{k=1}^{m} J_{k}$, while $J_{k} \cup J_{\ell}$ is not an interval whenever $k \neq \ell$.
- For $f:[a, b] \rightarrow X$ and $E \in \mathcal{E}([a, b])$ with a minimal decomposition $\left\{J_{k}: k=1, \ldots, m\right\}$, we define $\operatorname{var}(\mathrm{f}, \mathrm{E})=\sum_{k=1}^{m} \operatorname{var}_{J_{k}} f$.


## Proposition

Let $c, d \in[a, b], c<d$. Then

- $\operatorname{var}_{[c, d]} f=\operatorname{var}_{c}^{d} f, \quad \quad \operatorname{var}_{[c, d)} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c}^{d-\delta} f=\sup _{t \in[c, d)} \operatorname{var}_{c}^{t} f$,
- $\operatorname{var}_{(c, d)} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c+\delta}^{d-\delta} f, \quad \operatorname{var}_{(c, d]} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c+\delta}^{d} f=\sup _{t \in(c, d]} \operatorname{var}_{t}^{d} f$.
- If $f \in B V((c, d))$ and $f(c+), f(d-)$ exist, then $f \in B V[c, d]$ and

$$
\operatorname{var}_{c}^{d} f=\operatorname{var}_{(c, d)} f+\left\|\Delta^{+} f(c)\right\|_{x}+\left\|\Delta^{-} f(d)\right\|_{x}
$$

## Bounded Convergence Theorem

## Lewin (1986)

Let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset .
$$

$$
\alpha_{n}=\sup \left\{m(E): E \in \mathcal{E}\left(A_{n}\right)\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.

## Bounded Convergence Theorem

## Lewin (1986)

Let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that
Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{m(E): E \in \mathcal{E}\left(A_{n}\right)\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.

## LEMMA

Let $\quad f \in B V[a, b] \cap C[a, b]$ and let $\left\{A_{n}\right\} \subset[a, b]$ be bounded and such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.

## KS integral over elementary sets

## DEFINITION

Let $f, g:[a, b] \rightarrow \mathbb{R}$, and $E \in \mathcal{E}([a, b])$. Then

$$
\int_{E} f d g=\int_{a}^{b}\left(f \chi_{E}\right) d g
$$

provided the integral on the right-hand side exists.
Propositions

- Let $E_{1}, E_{2} \in \mathcal{E}([a, b]), E_{1} \cap E_{2}=\emptyset, f, g:[a, b] \rightarrow \mathbb{R}$ and let the integrals $\int_{E_{j}} f d g, j=1,2$, exist. Then

$$
\int_{E_{1} \cup E_{2}} f d g=\int_{E_{1}} f d g+\int_{E_{2}} f d g .
$$

- Let $J=(c, d)$ and let $\int_{J} f d g$ exists. Then

$$
\left|\int_{J} f d g\right| \leq\left(\operatorname{var}_{(c, d)} g\right)\left(\sup _{t \in(c, d)}|g(t)|\right)
$$

- Let $J=[c, d)$, and let $\int_{J} f d g$ and $g(c-)$ exist. Then

$$
\left|\int_{J} f d g\right| \leq\left(\operatorname{var}_{[c, d)} g\right)\left(\sup _{t \in[c, d)}|g(t)|\right)+\left|\Delta^{-} g(c)\right||g(c)| .
$$

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put $\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$,

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} .
$$

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \quad \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} .
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset $E$ of $H_{n}$ with $\operatorname{var}(f, E)>\varepsilon$.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \quad \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} .
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset $E$ of $H_{n}$ with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$ and $\left\{H_{n}\right\}$ are non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \quad \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} .
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset $E$ of $H_{n}$ with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$ and $\left\{H_{n}\right\}$ are non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$. By Cantor's intersection theorem we get $\bigcap_{n} H_{n} \neq \emptyset$.

## LEMMA

Let $f \in B V[a, b]$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be bounded subsets of $[a, b]$ such that $\quad A_{n+1} \subset A_{n}$ and $\bigcap A_{n}=\emptyset$. Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \quad \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is a closed elementary subset $E_{n}$ of $A_{n}$ such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$ is closed. We will show that $H_{n} \neq \emptyset$. Obviously,

$$
\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad \text { for any elementary subset } F \text { of } A_{n} \backslash E_{n} .
$$

Thus, $\operatorname{var}(f, F)<\varepsilon / 2^{n}$ and since any elementary subset $E$ of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} .
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset $E$ of $H_{n}$ with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$ and $\left\{H_{n}\right\}$ are non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$. By Cantor's intersection theorem we get $\bigcap_{n} H_{n} \neq \emptyset$.
This contradicts our assumption $\bigcap_{n} A_{n}=\emptyset$ and hence, $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g=0 \quad$ for all $n \in \mathbb{N}$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|f_{n}(t)\right\|_{\infty} \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|f_{n}(t)\right\|_{\infty} \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ due to LEMMA.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|f_{n}(t)\right\|_{\infty} \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ due to LEMMA. Hence, $\quad \alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{varr}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have

$$
t \in U_{n} \Rightarrow\left|f_{n}(t)\right|>\left|h_{n}(t)\right|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{varr}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have

$$
t \in U_{n} \Rightarrow\left|f_{n}(t)\right|>\left|h_{n}(t)\right|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g} \Rightarrow t \in A_{n},
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B V \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{varr}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have

$$
t \in U_{n} \Rightarrow\left|f_{n}(t)\right|>\left|h_{n}(t)\right|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g} \Rightarrow t \in A_{n},
$$

i.e. $\quad U_{n} \subset A_{n}$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$. We have $\quad U_{n} \subset A_{n}$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left\|h_{n}-f_{n}\right\|_{\infty}<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left|h_{n}(t)\right| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$. We have $\quad U_{n} \subset A_{n}$. Hence, by (1),

$$
\begin{aligned}
\left|\int_{a}^{b} d g h_{n}\right| & \leq\left|\int_{U_{n}} d g h_{n}\right|+\left|\int_{V_{n}} d g h_{n}\right| \leq \operatorname{var}\left(g, U_{n}\right)\left\|h_{n}\right\| U_{n}+\operatorname{var}\left(g, V_{n}\right)\left\|h_{n}\right\| v_{n} \\
& \leq \frac{\varepsilon}{6 K}(K+K)+\operatorname{var}_{a}^{b} g \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} g}=\frac{2}{3} \varepsilon
\end{aligned}
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left|h_{n}-f_{n}\right|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$. We have $\left|\int_{a}^{b} d g h_{n}\right|<\frac{2}{3} \varepsilon$.

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left|h_{n}-f_{n}\right|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$. We have $\left|\int_{a}^{b} d g h_{n}\right|<\frac{2}{3} \varepsilon$. Therefore,

$$
\left|\int_{a}^{b} f_{n} d g\right| \leq\left|\int_{a}^{b} d g h_{n}\right|+\left|\int_{a}^{b} d g\left(h_{n}-f_{n}\right)\right| \leq \frac{2}{3} \varepsilon+\left(\operatorname{var}_{a}^{b} g\right) \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}<\varepsilon .
$$

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left|h_{n}-f_{n}\right|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$. We have $\left|\int_{a}^{b} d g h_{n}\right|<\frac{2}{3} \varepsilon$. Therefore,

$$
\left|\int_{a}^{b} f_{n} d g\right| \leq\left|\int_{a}^{b} d g h_{n}\right|+\left|\int_{a}^{b} d g\left(h_{n}-f_{n}\right)\right| \leq \frac{2}{3} \varepsilon+\left(\operatorname{var}_{a}^{b} g\right) \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}<\varepsilon
$$

If $g \in B V \backslash C$,

## Sketch of the proof of Bounded Convergence Theorem

Let $g \in B \vee \cap C,\left\|f_{n}\right\|_{\infty} \leq K<\infty$ for $n \in \mathbb{N}$ and $f_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\left(\operatorname{var}_{a}^{b} g=0\right) \Rightarrow \int_{a}^{b} f_{n} d g=\int_{a}^{b} d g g=0 \quad$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} g \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left|f_{n}(t)\right| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(g, E): E \in \mathcal{E}\left(A_{n}\right)\right\} \searrow 0$ and

$$
\begin{equation*}
\operatorname{var}(g, E)<\frac{\varepsilon}{6 K} \quad \text { for } E \in \mathcal{E}\left(A_{n}\right) \text { and } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ and let $h_{n} \in S$ be such that $\left|h_{n}-f_{n}\right|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}\right\}$. We have $\left|\int_{a}^{b} d g h_{n}\right|<\frac{2}{3} \varepsilon$. Therefore,

$$
\left|\int_{a}^{b} f_{n} d g\right| \leq\left|\int_{a}^{b} d g h_{n}\right|+\left|\int_{a}^{b} d g\left(h_{n}-f_{n}\right)\right| \leq \frac{2}{3} \varepsilon+\left(\operatorname{var}_{a}^{b} g\right) \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} g}<\varepsilon
$$

If $g \in B \backslash \backslash C$, we split $\quad g=g_{\text {cont }}+g_{j u m p} \ldots$.

## Integration by parts

Let $f \in G[a, b], g \in B V[a, b]$. Then both integrals

$$
\int_{a}^{b} f d g \text { and } \int_{a}^{b} g d f
$$

exist and it holds

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=f(b) g(b)-f(a) g(a)-\sum_{a \leq t<b} \Delta^{+} f(t) \Delta^{+} g(t)+\sum_{a<t \leq b} \Delta^{-} f(t) \Delta^{-} g(t)
$$

## Substitution

Let $h \in B V[a, b], f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are such that $\int_{a}^{b} f d g$ exists.
Then, if one from the integrals

$$
\int_{a}^{b} h(t) d\left[\int_{a}^{t} f d g\right], \quad \int_{a}^{b} h f d g
$$

exists, the same is true also for the remaining one and

$$
\int_{a}^{b} h(t) d\left[\int_{a}^{t} f d g\right]=\int_{a}^{b} h f d g
$$

## Saks-Henstock Lemma

The Saks-Henstock lemma is an indispensable tool in the study of deeper properties of the Kurzweil-Stieltjes integral.

## Saks-Henstock Lemma

ASSUME: $\quad \int_{a}^{b} f d g$ exists, $\varepsilon>0$ is given and $\delta_{\varepsilon}$ is a gauge on $[a, b]$ such that

$$
\left|S(P)-\int_{a}^{b} f d g\right|<\varepsilon \text { for all } \delta_{\varepsilon} \text {-fine partitions } P \text { of }[a, b]
$$

THEN:

$$
\left|\sum_{j=1}^{n}\left(f\left(\theta_{j}\right)\left(g\left(t_{j}\right)-g\left(s_{j}\right)\right)-\int_{s_{j}}^{t_{j}} f d g\right)\right| \leq \varepsilon
$$

holds for every system $\left\{\left(\left[s_{j}, t_{j}\right], \theta_{j}\right): j \in\{1, \ldots, n\}\right\}$ such that

$$
a \leq s_{1} \leq \theta_{1} \leq t_{1} \leq s_{2} \leq \cdots \leq s_{n} \leq \theta_{n} \leq t_{n} \leq b,
$$

and

$$
\left[s_{j}, t_{j}\right] \subset\left(\theta_{j}-\delta\left(\theta_{j}\right), \theta_{j}+\delta\left(\theta_{j}\right)\right) \quad \text { for } j \in\{1, \ldots, n\}
$$

## Saks-Henstock Lemma

## Corollaries

- If $\int_{a}^{b} f d g$ exists, $\varepsilon>0$ is given and $\delta_{\varepsilon}$ is a gauge on $[a, b]$ such that $\left|S(P)-\int_{a}^{b} f d g\right|<\varepsilon$ for all $\delta_{\varepsilon}$-fine partitions $P$ of $[a, b]$, then

$$
\sum_{j=1}^{\nu(P)}\left|f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]-\int_{\alpha_{j-1}}^{\alpha_{j}} f d g\right| \leq \varepsilon
$$

holds for every $\delta_{\varepsilon}$-fine partition $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ of $[a, b]$.

## Saks-Henstock Lemma

## Corollaries

- If $\int_{a}^{b} f d g$ exists, $\varepsilon>0$ is given and $\delta_{\varepsilon}$ is a gauge on $[a, b]$ such that $\left|S(P)-\int_{a}^{b} f d g\right|<\varepsilon$ for all $\delta_{\varepsilon}$-fine partitions $P$ of $[a, b]$,
then

$$
\sum_{j=1}^{\nu(P)}\left|f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]-\int_{\alpha_{j-1}}^{\alpha_{j}} f d g\right| \leq \varepsilon
$$

holds for every $\delta_{\varepsilon}$-fine partition $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ of $[a, b]$.

- If $f \in G[a, b], g \in G[a, b]$ and at least one of them has a bounded variation, then

$$
h(t)=\int_{a}^{t} f d g \text { is regulated on }[a, b] .
$$

In particular, if $g \in B V[a, b]$, then also $h \in B V[a, b]$.

## Saks-Henstock Lemma

## Corollaries

- If $\int_{a}^{b} f d g$ exists, $\varepsilon>0$ is given and $\delta_{\varepsilon}$ is a gauge on $[a, b]$ such that

$$
\left|S(P)-\int_{a}^{b} f d g\right|<\varepsilon \text { for all } \delta_{\varepsilon} \text {-fine partitions } P \text { of }[a, b]
$$

then

$$
\sum_{j=1}^{\nu(P)}\left|f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]-\int_{\alpha_{j-1}}^{\alpha_{j}} f d g\right| \leq \varepsilon
$$

holds for every $\delta_{\varepsilon}$-fine partition $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ of $[a, b]$.

- If $f \in G[a, b], g \in G[a, b]$ and at least one of them has a bounded variation, then

$$
h(t)=\int_{a}^{t} f d g \text { is regulated on }[a, b] .
$$

In particular, if $g \in B V[a, b]$, then also $h \in B V[a, b]$.

- $\Delta^{+} h(t)=f(t) \Delta^{+} g(t)$ for $t \in[a, b), \quad \Delta^{-} h(s)=f(s) \Delta^{-} g(s)$ for $s \in(a, b]$.


## Hake Theorem

Theorem (Hake)

- $\int_{a}^{t} f d g$ exists for every $t \in[a, b)$ and $\lim _{t \rightarrow b-}\left(\int_{a}^{t} f d g+f(b)[g(b)-g(t)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=1
$$

- $\quad \int_{t}^{b} f d g$ exists for every $t \in(a, b]$ and $\lim _{t \rightarrow a+}\left(\int_{t}^{b} f d g+f(a)[g(t)-g(a)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=1
$$

## 6. CONTINUOUS LINEAR FUNCTIONALS

## Continuous linear functionals

## Riesz Theorem

$\Phi$ is continuous linear functional on $C[a, b]\left(\Phi \in(C[a, b])^{*}\right) \Leftrightarrow$
there is $p \in B V[a, b]$ such that $p(a)=0, p$ is right continuous on $(a, b)(p \in N B V[a, b])$ and

$$
\Phi(x)=\Phi_{p}(x):=\int_{a}^{b} x d p \text { for every } x \in C[a, b]
$$

Mapping $p \in N B V[a, b] \rightarrow \Phi_{p} \in(C[a, b])^{*}$ is isometric isomorphism.

## Continuous linear functionals

## Riesz Theorem

$\Phi$ is continuous linear functional on $C[a, b]\left(\Phi \in(C[a, b])^{*}\right) \Leftrightarrow$
there is $p \in B V[a, b]$ such that $p(a)=0, p$ is right continuous on $(a, b)(p \in N B V[a, b])$ and

$$
\Phi(x)=\Phi_{p}(x):=\int_{a}^{b} x d p \text { for every } x \in C[a, b]
$$

Mapping $p \in N B V[a, b] \rightarrow \Phi_{p} \in(C[a, b])^{*}$ is isometric isomorphism.

$$
G_{L}[a, b]=\{x \in G[a, b]: x(t-)=x(t) \text { for } t \in(a, b)\}
$$

## Continuous linear functionals on the space $G_{L}[a, b]$

$\Phi$ is continuous linear functional on $G_{L}[a, b]\left(\Phi \in\left(G_{L}[a, b]\right)^{*}\right) \quad \Leftrightarrow$ exist $p \in B V[a, b]$ and $q \in \mathbb{R}$ such that

$$
\Phi(x)=\Phi_{(p, q)}(x):=q x(a)+\int_{a}^{b} p d x \quad \text { for } x \in G_{L}[a, b]
$$

Mapping $(p, q) \in B V[a, b] \times \mathbb{R} \rightarrow \Phi_{(p, q)} \in\left(G_{L}[a, b]\right)^{*}$ is isomorphism.

## Continuous linear functionals

## Riesz theorem

$\Phi$ is continuous linear functional on $C[a, b]\left(\Phi \in(C[a, b])^{*}\right) \Leftrightarrow$
there is $p \in B V[a, b]$ such that $p(a)=0, p$ is right continuous on $(a, b)(p \in N B V[a, b])$ and

$$
\Phi(x)=\Phi_{p}(x):=\int_{a}^{b} x d p \quad \text { for every } x \in C[a, b] .
$$

Mapping $p \in N B V[a, b] \rightarrow \Phi_{p} \in(C[a, b])^{*}$ is isometric isomorphism.

$$
\tilde{G}_{L}[a, b]=\{x \in G[a, b]: x(t-)=x(t) \text { for } t \in(a, b]\}
$$

Continuous linear functionals on the space $\widetilde{G}_{L}[a, b]$
$\Phi$ is continuous linear functional on $\widetilde{G}_{L}[a, b]\left(\Phi \in\left(\widetilde{G}_{L}[a, b]\right)^{*}\right) \quad \Leftrightarrow$
there is $p \in B V[a, b]$ such that

$$
\Phi(x)=\Phi_{p}(x):=p(b) x(b)-\int_{a}^{b} p d x \quad \text { for } x \in \widetilde{G}_{L}[a, b]
$$

Mapping $p \in B V[a, b] \rightarrow \Phi_{p} \in\left(G_{L}[a, b]\right)^{*}$ is isomorphism.

## 7.

## Generalized Ilinear

 differential equations
## Impulses and GLDE

(I) $\quad x^{\prime}=P(t) x+q(t), \quad \Delta^{+} x\left(\tau_{k}\right)=B_{k} x\left(\tau_{k}\right)+d_{k}, \quad k=1,2, \ldots, r$,
where $\quad a=t_{0}<t_{1}<\ldots<t_{r}=b$,

$$
\begin{array}{r}
P \in L^{1}\left([a, b], \mathbb{R}^{n \times n}\right), q \in L^{1}\left([a, b], \mathbb{R}^{n}\right), B_{k} \in \mathbb{R}^{n \times n}, d_{k} \in \mathbb{R}^{n} . \\
\tau \in(a, b), B \in \mathbb{R}^{n \times n} \Longrightarrow \int_{a}^{b} d\left[\chi_{(\tau, b]}(s) B\right] x(s)=B x(\tau)
\end{array}
$$

Define

$$
\left.\begin{array}{l}
A(t)=\int_{a}^{t} P(s) d s+\sum_{k=1}^{r} \chi_{\left(\tau_{k}, b\right]}(t) B_{k}, \\
f(t)=\int_{a}^{t} q(s) d s+\sum_{k=1}^{r} \chi_{\left(\tau_{k}, b\right]}(t) d_{k}
\end{array}\right\} \quad \text { for } t \in[a, b] .
$$

Then

$$
\text { (I) } \Leftrightarrow \quad x(t)=x(a)+\int_{a}^{t} d A x+f(t)-f(a), \quad t \in[a, b] \text {, }
$$

## Generalized linear differential equations

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b] \quad\left[A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)\right]$.

## Generalized linear differential equations

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b] \quad\left[A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)\right]$.

Operator $\quad(L x)(t)=\int_{t_{0}}^{t} d A x \quad$ is linear and compact on $B V\left([a, b], \mathbb{R}^{n}\right) \Longrightarrow$
by FREDHOLM ALTERNATIVE we have

## Generalized linear differential equations

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b] \quad\left[A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)\right]$.

Operator $\quad(L x)(t)=\int_{t_{0}}^{t} d A x \quad$ is linear and compact on $B V\left([a, b], \mathbb{R}^{n}\right) \Longrightarrow$ by FREDHOLM ALTERNATIVE we have

## Lemma

(L) has 1! and solution for each $f \in B V\left([a, b], \mathbb{R}^{n}\right)$ iff the homogeneous equation
(H) $x(t)=\int_{t_{0}}^{t} d A x$
has only trivial solution.

## Generalized linear differential equations

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b] \quad\left[A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)\right]$.

Operator $\quad(L x)(t)=\int_{t_{0}}^{t} d A x \quad$ is linear and compact on $B V\left([a, b], \mathbb{R}^{n}\right) \Longrightarrow$

## by FREDHOLM ALTERNATIVE we have

## Lemma

(L) has 1! and solution for each $f \in B V\left([a, b], \mathbb{R}^{n}\right)$ iff the homogeneous equation
(H) $x(t)=\int_{t_{0}}^{t} d A x$
has only trivial solution.

## Lemma

Let

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { and } \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for each } t \in\left(t_{0}, b\right] \text { and each } s \in\left[a, t_{0}\right) .
$$

Then (H) has only trivial solution.

## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\quad \alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\quad \alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
- $x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
- $x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
- $x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right)$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
- $x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
- $x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[1-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right)$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}\right]$.


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}\right]$.
- $\quad t^{*}<b \Longrightarrow x\left(t^{*}+\right)=\Delta^{*}(t) x\left(t^{*}\right)=0$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}\right]$.
- $\quad t^{*}<b \Longrightarrow x\left(t^{*}+\right)=\Delta^{*}(t) x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}+\delta\right]$ for some $\delta \in\left(0, b-t^{*}\right)$


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}\right]$.
- $\quad t^{*}<b \Longrightarrow x\left(t^{*}+\right)=\Delta^{*}(t) x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}+\delta\right]$ for some $\delta \in\left(0, b-t^{*}\right) \Longrightarrow$ CONTRADICTION


## Sketch of proof

- $\Delta^{+} x\left(t_{0}\right)=\Delta^{+} A\left(t_{0}\right) x\left(t_{0}\right)=0 \Longrightarrow x\left(t_{0}+\right)=0$.
- $\alpha(t)=\operatorname{var}_{t_{0}}^{t} A$.
- Choose $\delta \in\left(0, b-t_{0}\right)$ so that $0 \leq \alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)<1 / 2$.
- For $t \in\left[t_{0}, t_{0}+\delta\right]$ we have

$$
\begin{aligned}
|x(t)| & \leq \int_{t_{0}}^{t} d[\alpha] x=\Delta^{+} \alpha\left(t_{0}\right)\left|x\left(t_{0}\right)\right|+\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \\
& =\lim _{\tau \rightarrow t_{0}+} \int_{\tau}^{t} d[\alpha]|x| \leq\left[\alpha\left(t_{0}+\delta\right)-\alpha\left(t_{0}+\right)\right]\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \\
& \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) .
\end{aligned}
$$

- $\quad\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right) \leq \frac{1}{2}\left(\sup _{t \in\left[t_{0}, t_{0}+\delta\right]}|x(t)|\right)$.
$x=0$ on $\left[t_{0}, t_{0}+\delta\right]$.
- $t^{*}=\sup \left\{\tau \in\left(t_{0}, b\right]: x=0\right.$ on $\left.\left[t_{0}, \tau\right]\right\}$
- $x=0$ on $\left[t_{0}, t^{*}\right) \Longrightarrow x\left(t^{*}-\right)=0 \Longrightarrow 0=\left[I-\Delta^{-} A\left(t^{*}\right)\right] x\left(t^{*}\right) \Longrightarrow x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}\right]$.
- $\quad t^{*}<b \Longrightarrow x\left(t^{*}+\right)=\Delta^{*}(t) x\left(t^{*}\right)=0$
$\Longrightarrow x(t)=0$ on $\left[0, t^{*}+\delta\right]$ for some $\delta \in\left(0, b-t^{*}\right) \Longrightarrow$ CONTRADICTION
$\Longrightarrow x \equiv 0$ on $\left[t_{0}, b\right]$.


## Existence of solutions

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Existence of solutions

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Theorem

## ASSUME:

- $\quad A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ and $t_{0} \in[a, b]$.

$$
\begin{aligned}
& \operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { for each } t \in\left(t_{0}, b\right] \\
& \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \text { for each } s \in\left[a, t_{0}\right)
\end{aligned}
$$

## Existence of solutions

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Theorem

## ASSUME:

- $\quad A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ and $t_{0} \in[a, b]$.

$$
\begin{aligned}
& \operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { for each } t \in\left(t_{0}, b\right] \\
& \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \text { for each } s \in\left[a, t_{0}\right)
\end{aligned}
$$

THEN: for each $f \in B V\left([a, b], \mathbb{R}^{n}\right)$ and $\tilde{x} \in X$, (L) has 1 ! solution $x \in B V\left([a, b], \mathbb{R}^{n}\right)$.

## Apriori estimates

## Gronwall lemma

ASSUME: $u, p:[a, b] \rightarrow[0, \infty)$ continuous, $K, L \geq 0$ and $u(t) \leq K+L \int_{a}^{t}(p u) d s$ for $t \in[a, b]$.
THEN: $u(t) \leq K \exp \left(L \int_{a}^{t} p d s\right)$ for $t \in[a, b]$.

## Generalized Gronwall lemma

## ASSUME:

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h \quad$ for $t \in[a, b]$.

THEN: $u(t) \leq K \exp (L[h(t)-h(a)]) \quad$ for $t \in[a, b]$.

## Corollary

AsSUME: $A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), \quad f \in G\left([a, b], \mathbb{R}^{n}\right), \operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0$ for $t \in(a, b]$ and

$$
c_{A}=\sup \left\{\left|\left[I-\Delta^{-} A(t)\right]^{-1}\right|: t \in[a, b)\right\} .
$$

THEN: $0<c_{A}<\infty$ and $|x(t)| \leq c_{A}\left(|\widetilde{x}|+2\|f\|_{\infty}\right) \exp \left(2 c_{A} \operatorname{var}_{a}^{t} A\right)$ on $[a, b]$ holds for every solution $x$ of the equation

$$
x(t)=\tilde{x}+\int_{a}^{t} d A x+f(t)-f(a), \quad t \in[a, b] .
$$

## Gronwall lemma - sketch of proof

## Assumptions

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h$ for $t \in[a, b]$.
- $\kappa \geq 0 \rightarrow w_{\kappa}(t)=\kappa \exp (L[h(t)-h(a)])$ for $t \in[a, b]$.

$$
\begin{aligned}
& \left.\int_{a}^{t} w_{\kappa} d h=\kappa \int_{a}^{t} \exp (L[h(s)-h(a)]) d h(s)\right] \\
& \left.\left.\quad=\kappa \int_{a}^{t}\left(\sum_{k=0}^{\infty} \frac{L^{k}}{k!}[h(s)-h(a)]^{k}\right) d h(s)\right]=\kappa \sum_{k=0}^{\infty}\left(\frac{L^{k}}{k!} \int_{a}^{t}[h(s)-h(a)]^{k}\right) d h(s)\right] \\
& \quad \leq \kappa \sum_{k=0}^{\infty}\left(\frac{L^{k}[h(t)-h(a)]^{k+1}}{(k+1)!}\right)=\frac{\kappa}{L}(\exp (L[h(t)-h(a)])-1) \\
& =\frac{w_{\kappa}(t)-\kappa}{L} \text { for } t \in[a, b] .
\end{aligned}
$$

## Gronwall lemma - sketch of proof

## Assumptions

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h$ for $t \in[a, b]$.
- $\quad \kappa \geq 0 \rightarrow w_{\kappa}(t)=\kappa \exp (L[h(t)-h(a)])$ for $t \in[a, b]$.
- $\int_{a}^{t} w_{\kappa} d h \leq \frac{w_{\kappa}(t)-\kappa}{L}$ for $t \in[a, b] \Longrightarrow$

$$
w_{\kappa}(t) \geq \kappa+L \int_{a}^{t} w_{\kappa} d h \quad \text { for every } \kappa \geq 0 \text { and } t \in[a, b] .
$$

## Gronwall lemma - sketch of proof

## Assumptions

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h$ for $t \in[a, b]$.
- $\quad \kappa \geq 0 \rightarrow w_{\kappa}(t)=\kappa \exp (L[h(t)-h(a)])$ for $t \in[a, b]$.
- $w_{\kappa}(t) \geq \kappa+L \int_{a}^{t} w_{\kappa} d h \quad$ for every $\kappa \geq 0$ and $t \in[a, b]$.


## Gronwall lemma - sketch of proof

## Assumptions

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h$ for $t \in[a, b]$.
- $\quad \kappa \geq 0 \rightarrow w_{\kappa}(t)=\kappa \exp (L[h(t)-h(a)])$ for $t \in[a, b]$.
- $w_{\kappa}(t) \geq \kappa+L \int_{a}^{t} w_{\kappa} d h$ for every $\kappa \geq 0$ and $t \in[a, b]$.
- Let $\varepsilon>0$ be given. Put $\kappa=K+\varepsilon$ and $v_{\varepsilon}=u-w_{\kappa}$.
- Subtracting the blue inequalities we find out

$$
v_{\varepsilon}(t) \leq-\varepsilon+L \int_{a}^{t} v_{\varepsilon} d h \text { for } t \in[a, b]
$$

wherefrom, using Hake Theorem twice, one can deduce that $v_{\varepsilon}<0$ on $[a, b]$.

## Gronwall lemma - sketch of proof

## Assumptions

- $u:[a, b] \rightarrow[0, \infty)$ is bounded on $[a, b], K, L \geq 0$,
- $h:[a, b] \rightarrow[0, \infty)$ is nondecreasing and left-continuous on $(a, b]$,
- $u(t) \leq K+L \int_{a}^{t} u d h$ for $t \in[a, b]$.
- $\quad \kappa \geq 0 \rightarrow w_{\kappa}(t)=\kappa \exp (L[h(t)-h(a)])$ for $t \in[a, b]$.
- $w_{\kappa}(t) \geq \kappa+L \int_{a}^{t} w_{\kappa} d h$ for every $\kappa \geq 0$ and $t \in[a, b]$.
- Let $\varepsilon>0$ be given. Put $\kappa=K+\varepsilon$ and $v_{\varepsilon}=u-w_{\kappa}$.
- Subtracting the blue inequalities we find out

$$
v_{\varepsilon}(t) \leq-\varepsilon+L \int_{a}^{t} v_{\varepsilon} d h \quad \text { for } t \in[a, b]
$$

wherefrom, using Hake Theorem twice, one can deduce that $v_{\varepsilon}<0$ on $[a, b]$.
Therefore

$$
u(t)<w_{\kappa}(t)=K \exp (L(h(t)-h(a)))+\varepsilon \exp (L(h(t)-h(a))) \quad \text { for } t \in[a, b] .
$$

Since $\varepsilon>0$ could be arbitrary, this proves Lemma.

## Existence of solutions

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b]$.

## Existence of solutions

(L) $\quad x(t)=\tilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b]$.

## Corollary

## ASSUME:

- $A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ and $t_{0} \in[a, b]$.
- $\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0$ for $t \in\left(t_{0}, b\right]$,
$\operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0$ for $s \in\left[a, t_{0}\right)$.

THEN: for each $f \in G\left([a, b], \mathbb{R}^{n}\right)$ and $\widetilde{x} \in \mathbb{R}^{n},(L)$ has 1 ! solution $x \in G\left([a, b], \mathbb{R}^{n}\right)$.

## Continuous dependence

$$
\begin{aligned}
x_{k}(t) & =\tilde{x}_{k}+\int_{a}^{t} d\left[A_{k}\right] x+f_{k}(t)-f_{k}(a), \\
x(t) & t \in[a, b] \\
x+\int_{a}^{t} d[A] x+f(t)-f(a), & t \in[a, b] .
\end{aligned}
$$

## Continuous dependence

$$
\begin{aligned}
x_{k}(t) & =\widetilde{x}_{k}+\int_{a}^{t} d\left[A_{k}\right] x+f_{k}(t)-f_{k}(a), \\
x(t) & t \in[a, b] . \\
x+\int_{a}^{t} d[A] x+f(t)-f(a), & t \in[a, b] .
\end{aligned}
$$

$A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), \quad f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \quad \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n} \quad$ for $k \in \mathbb{N}$.

## Continuous dependence

$$
\begin{aligned}
x_{k}(t) & =\widetilde{x}_{k}+\int_{a}^{t} d\left[A_{k}\right] x+f_{k}(t)-f_{k}(a), \\
x(t) & t \in[a, b] \\
x+\int_{a}^{t} d[A] x+f(t)-f(a), & t \in[a, b]
\end{aligned}
$$

$A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), \quad f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \quad \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n} \quad$ for $k \in \mathbb{N}$.

## Theorem

Assume:

- $\quad \operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0$ for $t \in(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f$ on $[a, b]$.

THEN: $\quad x_{k} \rightrightarrows x \quad$ on $[a, b]$.

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \widetilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on $(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.


## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on $(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

SHow that there is $k_{0}$ such that $\operatorname{det}\left[I-\Delta^{-} A_{k}(t)\right] \neq 0$ and $c_{A_{k}} \leq 2 c_{A}$ for $k \geq k_{0}$ and restrict hereafter to $k \geq k_{0}$.

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on ( $\left.a, b\right]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

SHow that there is $k_{0}$ such that $\operatorname{det}\left[I-\Delta^{-} A_{k}(t)\right] \neq 0$ and $c_{A_{k}} \leq 2 c_{A}$ for $k \geq k_{0}$ and restrict hereafter to $k \geq k_{0}$.
PUT $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$.

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on ( $\left.a, b\right]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

SHow that there is $k_{0}$ such that $\operatorname{det}\left[I-\Delta^{-} A_{k}(t)\right] \neq 0$ and $c_{A_{k}} \leq 2 c_{A}$ for $k \geq k_{0}$ and restrict hereafter to $k \geq k_{0}$.
PUT $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$.
Then

$$
w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b]
$$

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on ( $\left.a, b\right]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

SHow that there is $k_{0}$ such that $\operatorname{det}\left[I-\Delta^{-} A_{k}(t)\right] \neq 0$ and $c_{A_{k}} \leq 2 c_{A}$ for $k \geq k_{0}$ and restrict hereafter to $k \geq k_{0}$.
PUT $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$.
Then

$$
w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b]
$$

where

$$
\begin{aligned}
& \widetilde{w}_{k}=\left(\widetilde{x}_{k}-f_{k}(a)\right)-(\widetilde{x}-f(a)) \rightarrow 0, \quad h_{k}(t)=\int_{a}^{t} d\left[A_{k}-A\right](x-f)+\left(\int_{a}^{t} d\left[A_{k}\right] f_{k}-\int_{a}^{t} d[A] f\right), \\
& \lim _{k \rightarrow \infty}\left\|\int_{a}^{t} d\left[A_{k}\right] f_{k}-\int_{a}^{t} d[A] f\right\|_{\mathbb{R}^{n}}=0 \quad \text { for } t \in[a, b] \\
& \left\|\int_{a}^{t} d\left[A_{k}-A\right](x-f)\right\|_{\mathbb{R}^{n}} \leq 2\left\|A_{k}-A\right\|_{\infty}\|x-f\|_{B V} \quad \text { on }[a, b] \quad\left(\text { since }(x-f) \in B V\left([a, b], \mathbb{R}^{n \times n}\right) .\right.
\end{aligned}
$$

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on ( $\left.a, b\right]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

SHow that there is $k_{0}$ such that $\operatorname{det}\left[I-\Delta^{-} A_{k}(t)\right] \neq 0$ and $c_{A_{k}} \leq 2 c_{A}$ for $k \geq k_{0}$ and restrict hereafter to $k \geq k_{0}$.
PUT $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$.
Then

$$
w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b]
$$

where

$$
\begin{aligned}
& \widetilde{w}_{k}=\left(\widetilde{x}_{k}-f_{k}(a)\right)-(\widetilde{x}-f(a)) \rightarrow 0, \quad h_{k}(t)=\int_{a}^{t} d\left[A_{k}-A\right](x-f)+\left(\int_{a}^{t} d\left[A_{k}\right] f_{k}-\int_{a}^{t} d[A] f\right), \\
& \lim _{k \rightarrow \infty}\left\|\int_{a}^{t} d\left[A_{k}\right] f_{k}-\int_{a}^{t} d[A] f\right\|_{\mathbb{R}^{n}}=0 \quad \text { for } t \in[a, b] \\
& \left\|\int_{a}^{t} d\left[A_{k}-A\right](x-f)\right\|_{\mathbb{R}^{n}} \leq 2\left\|A_{k}-A\right\|_{\infty}\|x-f\|_{B V} \quad \text { on }[a, b] \quad\left(\text { since }(x-f) \in B V\left([a, b], \mathbb{R}^{n \times n}\right) .\right.
\end{aligned}
$$

$$
\text { Summarized: } \quad \lim _{k \rightarrow \infty}\left\|h_{k}\right\|_{\infty}=0, \quad \lim _{k \rightarrow \infty} \widetilde{w}_{k}=0
$$

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on $(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

We have: $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$,

$$
\begin{aligned}
& w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b] \\
& \lim _{k \rightarrow \infty}\left\|h_{k}\right\|_{\infty}=0, \quad \lim _{k \rightarrow \infty} \widetilde{w}_{k}=0
\end{aligned}
$$

## Sketch of the proof

## We Assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \widetilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on $(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

We have: $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$,

$$
\begin{aligned}
& w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b] \\
& \lim _{k \rightarrow \infty}\left\|h_{k}\right\|_{\infty}=0, \quad \lim _{k \rightarrow \infty} \widetilde{w}_{k}=0
\end{aligned}
$$

By Corollary of the Gronwall Lemma we get

$$
\left\|w_{k}(t)\right\|_{\mathbb{R}^{n}} \leq 2 c_{A}\left(\left\|\widetilde{w}_{k}\right\|_{\mathbb{R}^{n}}+2\left\|h_{k}\right\|_{\infty}\right) \exp \left(4 c_{A} \operatorname{var}_{a}^{t} A_{k}\right) \quad \text { on }[a, b] .
$$

## Sketch of the proof

## We assume:

- $A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n}$ for $k \in \mathbb{N}$,
- $A_{k}, k \in \mathbb{N}$, are left-continuous on $(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \tilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f \quad$ on $[a, b]$.

We have: $\quad w_{k}=\left(x_{k}-f_{k}\right)-(x-f)$,

$$
\begin{aligned}
& w_{k}(t)=\widetilde{w}_{k}+\int_{a}^{t} d\left[A_{k}(s)\right] w_{k}(s)+h_{k}(t)-h_{k}(a) \quad \text { for } k \in \mathbb{N} \text { and } t \in[a, b] \\
& \lim _{k \rightarrow \infty}\left\|h_{k}\right\|_{\infty}=0, \quad \lim _{k \rightarrow \infty} \widetilde{w}_{k}=0
\end{aligned}
$$

By Corollary of the Gronwall Lemma we get

$$
\left\|w_{k}(t)\right\|_{\mathbb{R}^{n}} \leq 2 c_{A}\left(\left\|\widetilde{w}_{k}\right\|_{\mathbb{R}^{n}}+2\left\|h_{k}\right\|_{\infty}\right) \exp \left(4 c_{A} \operatorname{var}_{a}^{t} A_{k}\right) \text { on }[a, b] .
$$

Hence

$$
\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{\infty}=0, \text { i.e. } \quad \lim _{n \rightarrow \infty}\left\|x_{k}-x\right\|_{\infty}=0
$$

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

## Consider

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x}, \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x},
\end{array}
$$

where $\quad P_{k}, P \in L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for $\quad k \in \mathbb{N}$.

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

Consider

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\widetilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x}
\end{array}
$$

where $\quad P_{k}, P \in L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for $k \in \mathbb{N}$.

## Kurzweil \& Vorel, 1957

## Assume:

- there is $m \in L\left([a, b], \mathbb{R}^{1}\right)$ such that $\left|P_{k}(t)\right| \leq m(t)$ a.e. on $[a, b]$ for $k \in \mathbb{N}$,
- $\quad \int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$ on $[a, b]$.


## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

Consider

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\widetilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x}
\end{array}
$$

where $\quad P_{k}, P \in L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for $k \in \mathbb{N}$.

## Kurzweil \& Vorel, 1957

## Assume:

- there is $m \in L\left([a, b], \mathbb{R}^{1}\right)$ such that $\left|P_{k}(t)\right| \leq m(t)$ a.e. on $[a, b]$ for $k \in \mathbb{N}$,
- $\int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$ on $[a, b]$.

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

Consider

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\widetilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x}
\end{array}
$$

where $\quad P_{k}, P \in L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for $k \in \mathbb{N}$.

## Kurzweil \& Vorel, 1957

## Assume:

- there is $m \in L\left([a, b], \mathbb{R}^{1}\right)$ such that $\left|P_{k}(t)\right| \leq m(t)$ a.e. on $[a, b]$ for $k \in \mathbb{N}$,
- $\int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$ on $[a, b]$.

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

$$
A_{k}(t)=\int_{a}^{t} P_{k} d s, \quad A_{k}(t)=\int_{a}^{t} P_{k} d s
$$

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

Consider

$$
\begin{aligned}
x_{k}(t) & =\tilde{x}_{k}+\int_{a}^{t} d A_{k} x_{k} \\
x(t) & =\widetilde{x}+\int_{a}^{t} d A x
\end{aligned}
$$

## Proposition

## Assume:

- $\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad A_{k} \rightrightarrows A$.

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

$$
A_{k}(t)=\int_{a}^{t} P_{k} d s, \quad A(t)=\int_{a}^{t} P d s,
$$

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x} \\
x^{\prime}=P(t) x, & x(a)=\tilde{x}
\end{array}
$$

## Opial, 1967

## Assume:

- $\left\|P_{k}\right\|_{1} \leq p^{*}<\infty$ pro all $k \in \mathbb{N}$,
- $\int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$,

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x},
\end{array}
$$

## Opial, 1967

## Assume:

- $\left\|P_{k}\right\|_{1} \leq p^{*}<\infty$ pro all $k \in \mathbb{N}$,
- $\int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$,

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

## Zhang \& Meng

$P_{k} \rightharpoonup P$ in $L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ iff:

$$
\left\|P_{k}\right\|_{1} \leq p^{*}<\infty \quad \text { pro all } k \in \mathbb{N} \text { and } \int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s \text { for } t \in[a, b]
$$

## Continuity in weak topology of $L\left([a, b], \mathbb{R}^{n}\right)$

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x} \\
x^{\prime}=P(t) x, & x(a)=\tilde{x}
\end{array}
$$

## Opial, 1967

## Assume:

- $\left\|P_{k}\right\|_{1} \leq p^{*}<\infty$ pro all $k \in \mathbb{N}$,
- $\int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s$,

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

## Chang \& Ming

$P_{k} \rightharpoonup P$ in $L\left([a, b], \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ iff:

$$
\left\|P_{k}\right\|_{1} \leq p^{*}<\infty \quad \text { pro all } k \in \mathbb{N} \text { and } \int_{a}^{t} P_{k} d s \rightrightarrows \int_{a}^{t} P d s \text { for } t \in[a, b]
$$

$$
\text { Opial } \approx\left[P_{k} \rightharpoonup P \text { in } L[a, b] \Rightarrow x_{k} \rightrightarrows x \text { on }[a, b]\right] .
$$

## Potentials bounded with the weight

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x}
\end{array}
$$

## Potentials bounded with the weight

$$
\begin{array}{ll}
x_{k}^{\prime}=P_{k}(t) x_{k}, & x_{k}(a)=\tilde{x} \\
x^{\prime}=P(t) x, & x(a)=\widetilde{x}
\end{array}
$$

## Opial, 1967

## Assume:

$$
\lim _{k \rightarrow \infty}\left[\left\|\int_{a}^{t} P_{k} d s-\int_{a}^{t} P d s\right\|_{\infty}\left(1+\left\|P_{k}\right\|_{1}\right)\right]=0 .
$$

THEN: $\quad x_{k} \rightrightarrows x$ on $[a, b]$.

## Variations bounded with the weight

$$
\begin{array}{rlrl}
x_{k}(t) & =\widetilde{x}_{k}+\int_{a}^{t} d\left[A_{k}\right] x_{k}(s)+f_{k}(t)-f_{k}(a), & t \in[a, b], \\
x(t) & =\widetilde{x}+\int_{a}^{t} d[A] x(s)+f(t)-f(a), & & t \in[a, b] . \tag{L}
\end{array}
$$

Theorem (Monteiro \& M.T.)
Assume: $\quad A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f_{k} \in G\left([a, b], \mathbb{R}^{n}\right), \widetilde{x_{k}} \in \mathbb{R}^{n}$ for $n \in \mathbb{N}$,

- $A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f \in B V\left([a, b], \mathbb{R}^{n}\right), \tilde{x} \in \mathbb{R}^{n}$,
- $\left[I-\Delta^{-} A(t)\right]^{-1} \in L(X)$ for $t \in(a, b]$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty}=0$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|f_{k}-f\right\|_{\infty}=0$.

THEN: $\quad(\mathrm{L})$ has a unique solution $x \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ on $[a, b]$.
MOREOVER: (L-k) has a unique solution $x_{k}$ for $k$ sufficiently large and $x_{k} \rightrightarrows x$.

## Kiguradze lemma

Essential tool for the proof of the previous result is the Kiguradze lemma:

## Kiguradze lemma

## ASSUME:

- $A, A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ for $k \in \mathbb{N}$,
- $\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0$ for $t \in(a, b]$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty}=0$.

THEN: there exist $r^{*}>0$ and $k_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \|x\|_{\infty} \leq r^{*}\left(|x(a)|+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left|x(t)-x(a)-\int_{a}^{t} d A_{k} x\right|\right) \\
& \quad \text { for } x \in G\left([a, b], \mathbb{R}^{n}\right) \text { and } k \geq k_{0} .
\end{aligned}
$$

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that

$$
\left\|y_{n}\right\|_{\infty}>n\left(\left\|y_{n}(a)\right\|_{x}+\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right) \sup _{t \in[a, b]}\left\|y_{n}(t)-y_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] y_{n}\right\|_{x}\right)
$$

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that

$$
\frac{1}{n}>\frac{\left\|y_{n}(a)\right\|_{x}}{\left\|y_{n}\right\|_{\infty}}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|\frac{y_{n}(t)}{\left\|y_{n}\right\|_{\infty}}-\frac{y_{n}(a)}{\left\|y_{n}\right\|_{\infty}}-\int_{a}^{t} d\left[A_{k_{n}}\right] \frac{y_{n}}{\left\|y_{n}\right\|_{\infty}}\right\|_{x}
$$

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that
$\left.\begin{array}{l}\frac{1}{n}>\left\|u_{n}(a)\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] u_{n}\right\|_{X} \\ \text { where } \quad u_{n}(t)=\frac{y_{n}(t)}{\left\|y_{n}\right\|_{\infty}} \text { for } t \in[a, b] \text { and } n \in \mathbb{N} .\end{array}\right\}\left\|u_{n}(a)\right\|_{X} \rightarrow 0$.
Put $\quad v_{n}(t)=u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] u_{n}$. Then

$$
\left\|v_{n}\right\|_{\infty}<\frac{1}{n\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)} \leq \frac{1}{n} \quad \text { for } n \in \mathbb{N} \Longrightarrow v_{n} \rightrightarrows 0 ;
$$

$z_{n}:=u_{n}-v_{n} \in B V, z_{n}(a)=u_{n}(a),\left\|z_{n}\right\|_{B V} \leq 1+\operatorname{var}_{a}^{b} A_{k_{n}}$ and

$$
z_{n}(t)=z_{n}(a)+\int_{a}^{t} d[A] z_{n}+h_{n}(t), \quad h_{n}(t)=\int_{a}^{t} d\left[A_{k_{n}}-A\right] z_{n}+\int_{a}^{t} d\left[A_{k_{n}}\right] v_{n} \text { for } t \in[a, b]
$$

$\left\|\int_{a}^{t} d\left[A_{k_{n}}-A\right] z_{n}\right\|_{x} \leq 2\left\|A_{k_{n}}-A\right\|_{\infty}\left\|z_{n}\right\|_{B V} \leq 2\left\|A_{k_{n}}-A\right\|_{\infty}\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)$,
$\left\|\int_{a}^{t} d A_{k_{n}} v_{n}\right\|_{\infty} \leq\left(\operatorname{var}_{a}^{b} A_{k_{n}}\right)\left\|v_{n}\right\|_{x} \leq \frac{1}{n} \frac{\operatorname{var}_{a}^{b} A_{k_{n}}}{\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)} \leq \frac{1}{n}$

$$
\Longrightarrow\left\|h_{n}\right\|_{\infty} \rightarrow 0
$$

Hence, by the generalized Gronwall inequality

$$
\lim _{n \rightarrow \infty}\left\|z_{n}\right\|_{\infty} \leq \lim _{n \rightarrow \infty} c_{A}\left(\left\|z_{n}(a)\right\|_{X}+2\left\|h_{n}\right\|_{\infty}\right) \exp \left(c_{A} \operatorname{var}_{a}^{b} A\right)=0
$$

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that $\left.\begin{array}{l}\frac{1}{n}>\left\|u_{n}(a)\right\| x+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] u_{n}\right\|_{x} \\ \text { where } \quad u_{n}(t)=\frac{y_{n}(t)}{\left\|y_{n}\right\|_{\infty}} \text { for } t \in[a, b] \text { and } n \in \mathbb{N} .\end{array}\right\}\left\|u_{n}(a)\right\|_{x} \rightarrow 0$. Put $v_{n}(t)=u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{n}\right] u_{n}$. Then

$$
\left\|v_{n}\right\|_{\infty}<\frac{1}{n\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)} \leq \frac{1}{n} \quad \text { for } n \in \mathbb{N} \Longrightarrow v_{n} \rightrightarrows 0 ;
$$

$z_{n}:=u_{n}-v_{n} \rightrightarrows 0$

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that $\left.\begin{array}{l}\frac{1}{n}>\left\|u_{n}(a)\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] u_{n}\right\|_{x} \\ \text { where } u_{n}(t)=\frac{y_{n}(t)}{\left\|y_{n}\right\|_{\infty}} \text { for } t \in[a, b] \text { and } n \in \mathbb{N} .\end{array}\right\}\left\|u_{n}(a)\right\|_{x} \rightarrow 0$. Put $v_{n}(t)=u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{n}\right] u_{n}$. Then $\left\|v_{n}\right\|_{\infty}<\frac{1}{n\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)} \leq \frac{1}{n} \quad$ for $n \in \mathbb{N} \Longrightarrow v_{n} \rightrightarrows 0 ;$
$z_{n}:=u_{n}-v_{n} \rightrightarrows 0 \Longrightarrow u_{n} \rightrightarrows 0$.
BUT: $\left\|u_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}-$ CONTRADICTION!!!

## Kiguradze lemma - sketch of proof

WE ASSUME: for each $n \in \mathbb{N}$ there are $k_{n} \in \mathbb{N}$ and $y_{n} \in G([a, b], X)$ such that $\left.\begin{array}{l}\frac{1}{n}>\left\|u_{n}(a)\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{k_{n}}\right] u_{n}\right\|_{x} \\ \text { where } \quad u_{n}(t)=\frac{y_{n}(t)}{\left\|y_{n}\right\|_{\infty}} \text { for } t \in[a, b] \text { and } n \in \mathbb{N} .\end{array}\right\}\left\|u_{n}(a)\right\|_{x} \rightarrow 0$. Put $v_{n}(t)=u_{n}(t)-u_{n}(a)-\int_{a}^{t} d\left[A_{n}\right] u_{n}$. Then $\left\|v_{n}\right\|_{\infty}<\frac{1}{n\left(1+\operatorname{var}_{a}^{b} A_{k_{n}}\right)} \leq \frac{1}{n}$ for $n \in \mathbb{N} \Longrightarrow v_{n} \rightrightarrows 0 ;$
$z_{n}:=u_{n}-v_{n} \rightrightarrows 0 \Longrightarrow u_{n} \rightrightarrows 0$.
BUT: $\left\|u_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}-$ CONTRADICTION!!!

## Sketch of proof of the Opial Type Theorem

$$
\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A
$$

## Sketch of proof of the Opial Type Theorem

$$
\begin{aligned}
& \left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A \\
& \quad \Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X) \text { on }(a, b] \text { for } k \geq k_{1}
\end{aligned}
$$

## Sketch of proof of the Opial Type Theorem

$$
\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A
$$

$$
\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X) \text { on }(a, b] \text { for } k \geq k_{1}
$$

$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.

## Sketch of proof of the Opial Type Theorem

$\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A$
$\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X)$ on $(a, b]$ for $k \geq k_{1}$
$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.
Put $u_{k}=x_{k}-x$. Then $u_{k}(a)=\tilde{x}_{k}-\tilde{x} \quad$ and

$$
u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}=\int_{a}^{t} d\left[A_{k}-A\right] x+\left(f_{k}(t)-f(t)\right)-\left(f_{k}(a)-f(a)\right)
$$

## Sketch of proof of the Opial Type Theorem

$\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A$
$\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X)$ on $(a, b]$ for $k \geq k_{1}$
$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.

Put $u_{k}=x_{k}-x$. Then $u_{k}(a)=\tilde{x}_{k}-\tilde{x} \quad$ and

$$
u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}=\int_{a}^{t} d\left[A_{k}-A\right] x+\left(f_{k}(t)-f(t)\right)-\left(f_{k}(a)-f(a)\right)
$$

Kiguradze's Lemma $\quad \Longrightarrow \exists k_{0} \geq k_{1}$ and $r^{*} \in(0, \infty)$ :

$$
\begin{aligned}
\left\|u_{k}\right\|_{\infty} & \leq r^{*}\left(\left\|u_{k}(a)\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}\right\|_{X}\right) \\
& \leq r^{*}\left(\left\|\widetilde{x}_{k}-\widetilde{x}\right\|_{x}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left(2\left\|A_{k}-A\right\|_{\infty}\|x\|_{B V}+2\left\|f_{k}-f\right\|_{\infty}\right)\right) \text { for } k \geq k_{0}
\end{aligned}
$$

## Sketch of proof of the Opial Type Theorem

$\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A$
$\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X)$ on $(a, b]$ for $k \geq k_{1}$
$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.

Put $u_{k}=x_{k}-x$. Then $u_{k}(a)=\tilde{x}_{k}-\tilde{x}$ and

$$
u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}=\int_{a}^{t} d\left[A_{k}-A\right] x+\left(f_{k}(t)-f(t)\right)-\left(f_{k}(a)-f(a)\right)
$$

Kiguradze's Lemma $\quad \Longrightarrow \exists k_{0} \geq k_{1}$ and $r^{*} \in(0, \infty)$ :

$$
\begin{aligned}
\left\|u_{k}\right\|_{\infty} & \leq r^{*}\left(\left\|u_{k}(a)\right\| x+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}\right\|_{X}\right) \\
& \leq r^{*}\left(\left\|\widetilde{x}_{k}-\widetilde{x}\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left(2\left\|A_{k}-A\right\|_{\infty}\|x\|_{B V}+2\left\|f_{k}-f\right\|_{\infty}\right)\right) \text { for } k \geq k_{0} \\
\Longrightarrow u_{k} & \rightrightarrows 0
\end{aligned}
$$

## Sketch of proof of the Opial Type Theorem

$\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A$
$\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X)$ on $(a, b]$ for $k \geq k_{1}$
$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.

Put $u_{k}=x_{k}-x$. Then $u_{k}(a)=\tilde{x}_{k}-\tilde{x}$ and

$$
u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}=\int_{a}^{t} d\left[A_{k}-A\right] x+\left(f_{k}(t)-f(t)\right)-\left(f_{k}(a)-f(a)\right)
$$

Kiguradze's Lemma $\quad \Longrightarrow \exists k_{0} \geq k_{1}$ and $r^{*} \in(0, \infty)$ :

$$
\begin{aligned}
\left\|u_{k}\right\|_{\infty} & \leq r^{*}\left(\left\|u_{k}(a)\right\|_{x}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}\right\|_{x}\right) \\
& \leq r^{*}\left(\left\|\widetilde{x}_{k}-\widetilde{x}\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left(2\left\|A_{k}-A\right\|_{\infty}\|x\|_{B V}+2\left\|f_{k}-f\right\|_{\infty}\right)\right) \text { for } k \geq k_{0} . \\
\Longrightarrow u_{k} & \rightrightarrows 0 \Longrightarrow x_{k} \rightrightarrows x .
\end{aligned}
$$

## Sketch of proof of the Opial Type Theorem

$\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \rightarrow 0 \Longrightarrow A_{k} \rightrightarrows A$
$\Longrightarrow \exists k_{1} \in \mathbb{N}:\left[I-\Delta^{-} A_{k}(t)\right]^{-1} \in \mathcal{L}(X)$ on $(a, b]$ for $k \geq k_{1}$
$\Longrightarrow$ solutions $x_{k}, x$ exist for all $k \geq k_{0}$.

Put $u_{k}=x_{k}-x$. Then $u_{k}(a)=\tilde{x}_{k}-\tilde{x}$ and

$$
u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}=\int_{a}^{t} d\left[A_{k}-A\right] x+\left(f_{k}(t)-f(t)\right)-\left(f_{k}(a)-f(a)\right)
$$

Kiguradze's Lemma $\quad \Longrightarrow \exists k_{0} \geq k_{1}$ and $r^{*} \in(0, \infty)$ :

$$
\begin{aligned}
\left\|u_{k}\right\|_{\infty} & \leq r^{*}\left(\left\|u_{k}(a)\right\| x+\left(1+\operatorname{var}_{a}^{b} A_{k}\right) \sup _{t \in[a, b]}\left\|u_{k}(t)-u_{k}(a)-\int_{a}^{t} d\left[A_{k}\right] u_{k}\right\|_{X}\right) \\
& \leq r^{*}\left(\left\|\widetilde{x}_{k}-\widetilde{x}\right\|_{X}+\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left(2\left\|A_{k}-A\right\|_{\infty}\|x\|_{B V}+2\left\|f_{k}-f\right\|_{\infty}\right)\right) \text { for } k \geq k_{0} \\
\Longrightarrow u_{k} & \rightrightarrows 0 \Longrightarrow x_{k} \rightrightarrows x .
\end{aligned}
$$

## Remark

Main Theorem could be extended to the case $f \in G([a, b], X)$ if the following convergence assertion was true:

Let $A, A_{k} \in B V([a, b], \mathcal{L}(X))$ for $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty}=0$. Then

$$
\int_{a}^{t} d\left[A_{k}\right] f \rightrightarrows \int_{a}^{t} d[A] f \quad \text { for each } f \in G([a, b], X)
$$

## Remark

Main Theorem could be extended to the case $f \in G([a, b], X)$ if the following convergence assertion was true:

Let $A, A_{k} \in B V([a, b], \mathcal{L}(X))$ for $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} A_{k}\right)\left\|A_{k}-A\right\|_{\infty}=0$. Then

$$
\int_{a}^{t} d\left[A_{k}\right] f \rightrightarrows \int_{a}^{t} d[A] f \quad \text { for each } f \in G([a, b], X)
$$

However, next example shows that this does not hold.

Let $a=0, b=1, X=\mathbb{R}$,

$$
\begin{array}{ll}
n_{k}=\left[k^{3 / 2}\right]+1, & \tau_{m, k}=\frac{1}{2^{n_{k}-m}} \quad \text { if } m \in\left\{0,1, \ldots, n_{k}\right\}, \\
a_{0, k}=\frac{2^{n_{k}}}{k}(-1)^{n_{k}}, & b_{0, k}=\frac{1}{k}(-1)^{n_{k}-1}, \\
a_{m, k}=\frac{2^{n_{k}-m+1}}{k}(-1)^{n_{k}-m}, b_{m, k}=\frac{3}{k}(-1)^{n_{k}-m+1} \text { if } m \in\left\{1,2, \ldots, n_{k}-1\right\} \\
A_{k}(t)= \begin{cases}0 & \text { if } t \in\left[0, \tau_{0, k}\right], \\
a_{m, k} t+b_{m, k} & \text { if } t \in\left[\tau_{m, k}, \tau_{m+1, k}\right] \text { and } m \in\left\{0,1, \ldots, n_{k}-1\right\},\end{cases} \\
A(t)=0 \text { for } t \in[0,1] .
\end{array}
$$

Then

$$
\begin{aligned}
& \operatorname{var}_{0}^{1} A_{k} \leq \frac{1}{k}+\frac{2\left(n_{k}-1\right)}{k} \leq \frac{1}{k}+2 \sqrt{k}<\infty \\
& \left(1+\operatorname{var}_{0}^{1} A_{k}\right)\left\|A_{k}-A\right\|_{\infty} \leq\left(1+\frac{2 n_{k}-1}{k}\right) \frac{1}{k} \leq \frac{1}{k}+\frac{2}{\sqrt{k}}+\frac{1}{k^{2}}
\end{aligned}
$$

However, if

$$
f(t)= \begin{cases}\frac{(-1)^{n}}{\sqrt[4]{n}} & \text { if } t \in\left(2^{-n}, 2^{-(n-1)}\right] \text { for some } n \in \mathbb{N}  \tag{1}\\ 0 & \text { if } t=0\end{cases}
$$

then $f$ is regulated, $\operatorname{var}_{0}^{1} f=\infty$ and

$$
\begin{equation*}
\int_{0}^{1} d\left[A_{k}\right] f \geq \frac{2}{k} \sum_{m=1}^{n_{k}-1} \frac{1}{\sqrt[4]{m}}>\frac{2}{k} \int_{1}^{n_{k}} \frac{1}{\sqrt[4]{t}} d t=\frac{8}{3 k}\left(\sqrt[4]{\left(n_{k}\right)^{3}}-1\right) \tag{2}
\end{equation*}
$$

where the right hand side tends to $\infty$ for $k \rightarrow \infty$.

Example

$$
x_{k}(t)=\tilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{cl}
k t & \text { if } 0 \leq t \leq 1 / k \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\}
$$

## Example

$$
x_{k}(t)=\tilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k, \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0, \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$,

## Example

$$
x_{k}(t)=\tilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k, \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0, \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.

## Example

$$
x_{k}(t)=\widetilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k, \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0, \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.
On the other hand, we have

## Example

$$
x_{k}(t)=\widetilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0 \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.

On the other hand, we have $A_{k} \rightharpoonup^{*} A$ in $N B V[a, b]=(C[a, b])^{*}$ and
$x_{k}(t)=\left\{\begin{array}{ll}\exp (P t+k I t) \widetilde{x} & \text { if } 0<t \leq 1 / k, \\ \exp (P t+I) \widetilde{x} & \text { if } 1 / k \leq t \leq 1\end{array}\right\} \rightarrow x_{0}(t)=\left\{\begin{array}{ll}\widetilde{x} & \text { if } t=0, \\ \exp (P t+I) \widetilde{x} & \text { if } 0<t \leq 1\end{array}\right\}$ on [0,1].

## Example

$$
x_{k}(t)=\widetilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0 \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.

On the other hand, we have $A_{k} \rightharpoonup^{*} A$ in $N B V[a, b]=(C[a, b])^{*}$ and
$x_{k}(t)=\left\{\begin{array}{ll}\exp (P t+k I t) \widetilde{x} & \text { if } 0<t \leq 1 / k, \\ \exp (P t+I) \widetilde{x} & \text { if } 1 / k \leq t \leq 1\end{array}\right\} \rightarrow x_{0}(t)=\left\{\begin{array}{ll}\widetilde{x} & \text { if } t=0, \\ \exp (P t+I) \widetilde{x} & \text { if } 0<t \leq 1\end{array}\right\}$ on [0,1].
BUT, $\quad x_{0}$ cannot be a solution to $\quad x(t)=\widetilde{x}+\int_{0}^{t} d A x$ on $[0,1]$ !!!

## Example

$$
x_{k}(t)=\widetilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0 \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.
On the other hand, we have $A_{k} \rightharpoonup^{*} A$ in $\operatorname{NBV}[a, b]=(C[a, b])^{*} \quad$ and
$x_{k}(t)=\left\{\begin{array}{ll}\exp (P t+k I t) \widetilde{x} & \text { if } 0<t \leq 1 / k, \\ \exp (P t+l) \widetilde{x} & \text { if } 1 / k \leq t \leq 1\end{array}\right\} \rightarrow x_{0}(t)=\left\{\begin{array}{ll}\widetilde{x} & \text { if } t=0, \\ \exp (P t+l) \widetilde{x} & \text { if } 0<t \leq 1\end{array}\right\}$ on $[0,1]$.
BUT, $\quad x_{0}$ cannot be a solution to $x(t)=\tilde{x}+\int_{0}^{t} d A x$ on $[0,1]!!!\quad$ as

$$
\Delta^{+} x_{0}(0)=(\exp (I)-I) \widetilde{x} \neq \widetilde{x}=\Delta^{+} x(0)
$$

## Example

$$
x_{k}(t)=\widetilde{x}+\int_{0}^{t} d A_{k} x_{k}, \quad t \in[0,1]
$$

where

$$
A_{k}(t)=P t+I\left\{\begin{array}{ll}
k t & \text { if } 0 \leq t \leq 1 / k, \\
1 & \text { if } \frac{1}{k} \leq t \leq 1
\end{array}\right\} \rightrightarrows A(t)=P t+I\left\{\begin{array}{ll}
0 & \text { if } t=0, \\
1 & \text { if } t \in(0,1]
\end{array}\right\}
$$

locally on $(0,1]$, BUT NOT UNIFORMLY on $[0,1]$.
On the other hand, we have $A_{k} \rightharpoonup^{*} A$ in $\operatorname{NBV}[a, b]=(C[a, b])^{*} \quad$ and
$x_{k}(t)=\left\{\begin{array}{ll}\exp (P t+k I t) \widetilde{x} & \text { if } 0<t \leq 1 / k, \\ \exp (P t+l) \widetilde{x} & \text { if } 1 / k \leq t \leq 1\end{array}\right\} \rightarrow x_{0}(t)=\left\{\begin{array}{ll}\widetilde{x} & \text { if } t=0, \\ \exp (P t+l) \widetilde{x} & \text { if } 0<t \leq 1\end{array}\right\}$ on $[0,1]$.
BUT, $\quad x_{0}$ cannot be a solution to $\quad x(t)=\tilde{x}+\int_{0}^{t} d A x$ on $[0,1]!!!$ as

$$
\Delta^{+} x_{0}(0)=(\exp (I)-I) \widetilde{x} \neq \widetilde{x}=\Delta^{+} x(0)
$$

## Emphatic Convergence

$$
\begin{array}{ll}
x_{k}(t)=\widetilde{x}_{k}+\int_{a}^{t} d A_{k} x+f_{k}(t)-f_{k}(a), & t \in[a, b] \\
x(t)=\widetilde{x}+\int_{a}^{t} d A x+f(t)-f(a), & t \in[a, b] .
\end{array}
$$

$A, A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f, f_{k} \in G([a, b], X)$ are left-continuous on $(a, b]$

## Emphatic Convergence

$$
\begin{array}{ll}
x_{k}(t)=\widetilde{x}_{k}+\int_{a}^{t} d A_{k} x+f_{k}(t)-f_{k}(a), & t \in[a, b], \\
x(t)=\widetilde{x}+\int_{a}^{t} d A x+f(t)-f(a), & t \in[a, b] .
\end{array}
$$

$A, A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f, f_{k} \in G([a, b], X)$ are left-continuous on $(a, b]$

## Halas

LET:

- $\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad A_{k} \rightrightarrows A, \quad f_{k} \rightrightarrows f$ locally on $(a, b]$ and $\tilde{x}_{k} \rightarrow \tilde{x}$,
- $\forall \varepsilon>0 \exists \delta>0$ such that $\forall t \in(a, a+\delta) \exists k_{0} \in \mathbb{N}$ such that

$$
\left|x_{k}(a)-\tilde{x}-\Delta^{+} A(a) \tilde{x}-\Delta^{+} f(a)\right|<\varepsilon \quad \text { for all } \quad k \geq k_{0} .
$$

## Emphatic Convergence

$$
\begin{aligned}
& x_{k}(t)=\widetilde{x}_{k}+\int_{a}^{t} d A_{k} x+f_{k}(t)-f_{k}(a), \\
& t \in[a, b], \\
& x(t)=\widetilde{x}+\int_{a}^{t} d A x+f(t)-f(a),
\end{aligned} \quad t \in[a, b] .
$$

$A, A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f, f_{k} \in G([a, b], X)$ are left-continuous on $(a, b]$

## Halas

LET:

- $\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad A_{k} \rightrightarrows A, \quad f_{k} \rightrightarrows f$ locally on $(a, b]$ and $\tilde{x}_{k} \rightarrow \tilde{x}$,
- $\forall \varepsilon>0 \exists \delta>0$ such that $\forall t \in(a, a+\delta) \exists k_{0} \in \mathbb{N}$ such that

$$
\left|x_{k}(a)-\tilde{x}-\Delta^{+} A(a) \tilde{x}-\Delta^{+} f(a)\right|<\varepsilon \quad \text { for all } \quad k \geq k_{0} .
$$

THEN: $\quad x_{k} \rightarrow x$ on $[a, b], \quad$ while $\quad x_{k} \rightrightarrows x$ locally on $(a, b]$.

## Emphatic Convergence

$$
\begin{aligned}
& x_{k}(t)=\widetilde{x}_{k}+\int_{a}^{t} d A_{k} x+f_{k}(t)-f_{k}(a), \\
& t \in[a, b], \\
& x(t)=\widetilde{x}+\int_{a}^{t} d A x+f(t)-f(a),
\end{aligned} \quad t \in[a, b] .
$$

$A, A_{k} \in B V\left([a, b], \mathbb{R}^{n \times n}\right), f, f_{k} \in G([a, b], X)$ are left-continuous on $(a, b]$

## Halas

LET:

- $\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad A_{k} \rightrightarrows A, \quad f_{k} \rightrightarrows f$ locally on $(a, b]$ and $\tilde{x}_{k} \rightarrow \tilde{x}$,
- $\forall \varepsilon>0 \exists \delta>0$ such that $\forall t \in(a, a+\delta) \exists k_{0} \in \mathbb{N}$ such that

$$
\left|x_{k}(a)-\tilde{x}-\Delta^{+} A(a) \tilde{x}-\Delta^{+} f(a)\right|<\varepsilon \quad \text { for all } \quad k \geq k_{0} .
$$

THEN: $\quad x_{k} \rightarrow x$ on $[a, b], \quad$ while $\quad x_{k} \rightrightarrows x$ locally on $(a, b]$.
LEMMA applies to the last EXAMPLE with

$$
A(t)=P t+I \quad \text { and } \quad f(t)=(\widetilde{y}-\widetilde{x}) \chi_{(0,1]}(t), \quad \text { where } \tilde{y}=\exp (I) \widetilde{x}
$$

## Cauchy matrix

## Assume:

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { and } \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

## Cauchy matrix

## Assume:

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { and } \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

## Theorem

There is uniquely determined matrix valued function $U:[a, b] \times[a, b] \rightarrow \mathbb{R}^{n \times n}$ such that

$$
U(t, s)=I+\int_{s}^{t} d[A(\tau)] U(\tau, s) \text { for } t, s \in[a, b]
$$

## Cauchy matrix

## Assume:

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { and } \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

## Theorem

There is uniquely determined matrix valued function $U:[a, b] \times[a, b] \rightarrow \mathbb{R}^{n \times n}$ such that

$$
U(t, s)=I+\int_{s}^{t} d[A(\tau)] U(\tau, s) \text { for } t, s \in[a, b]
$$

Furthermore:

- $U(\cdot, s) \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ for every $s \in[a, b]$,
- $U(t, t)=I$ for every $t \in[a, b]$,
- $U(t, s)^{-1} \in \mathbb{R}^{n \times n}$ for every $t, s \in[a, b]$.


## Cauchy matrix

## Assume:

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \text { and } \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

## Theorem

There is uniquely determined matrix valued function $U:[a, b] \times[a, b] \rightarrow \mathbb{R}^{n \times n}$ such that

$$
U(t, s)=I+\int_{s}^{t} d[A(\tau)] U(\tau, s) \quad \text { for } t, s \in[a, b]
$$

Furthermore:

- $U(\cdot, s) \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ for every $s \in[a, b]$,
- $U(t, t)=I$ for every $t \in[a, b]$,
- $U(t, s)^{-1} \in \mathbb{R}^{n \times n}$ for every $t, s \in[a, b]$.


## Corollary

Let: $t_{0} \in[a, b]$ and $\tilde{x} \in X . \quad$ Then: $x:[a, b] \rightarrow X$ is a solution of

$$
x(t)-\tilde{x}-\int_{t_{0}}^{t} d A x=0 \quad \text { on }[a, b]
$$

iff $\quad x(t)=U\left(t, t_{0}\right) \tilde{x}$ for $t \in[a, b]$.
(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Variation-of-constants formula

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Theorem

ASSUME: $t_{0} \in[a, b], A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$,

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \quad \text { and } \quad \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

and $U$ is the Cauchy matrix function for (L).

## Variation-of-constants formula

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f(a), \quad t \in[a, b]$.

## Theorem

AsSUME: $t_{0} \in[a, b], A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$,

$$
\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \quad \text { and } \quad \operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0 \quad \text { for } t \in(a, b], s \in[a, b)
$$

and $U$ is the Cauchy matrix function for (L).
THEN: (L) has for every $\tilde{x} \in \mathbb{R}^{n}$ and $f \in G\left([a, b], R^{n}\right)$ a unique solution $x$ on $[a, b]$. This solution is given by

$$
x(t)=U\left(t, t_{0}\right) \widetilde{x}+f(t)-f\left(t_{0}\right)-\int_{t_{0}}^{t} d_{s}[U(t, s)]\left(f(s)-f\left(t_{0}\right)\right) \quad \text { for } t \in[a, b]
$$

## 8. MEASURE EQUATIONS

## Second order measure equations

Let

$$
A(t)=\left(\begin{array}{cc}
0 & P(t) \\
Q(t) & 0
\end{array}\right), \quad f(t)=\binom{g(t)}{h(t)} \quad \text { and } \quad \tilde{x}=\binom{\tilde{y}}{\tilde{z}}
$$

where $P, Q \in B V\left([a, b], \mathbb{R}^{n \times n}\right), g, h \in B V\left([a, b], \mathbb{R}^{n}\right)$ and $\tilde{y}, \tilde{z} \in \mathbb{R}^{n}$.

## Second order measure equations

Let

$$
A(t)=\left(\begin{array}{cc}
0 & P(t) \\
Q(t) & 0
\end{array}\right), \quad f(t)=\binom{g(t)}{h(t)} \quad \text { and } \quad \tilde{x}=\binom{\tilde{y}}{\tilde{z}}
$$

where $P, Q \in B V\left([a, b], \mathbb{R}^{n \times n}\right), g, h \in B V\left([a, b], \mathbb{R}^{n}\right)$ and $\tilde{y}, \tilde{z} \in \mathbb{R}^{n}$.
Then

$$
x(t)=\widetilde{x}+\int_{a}^{t} d A x+f(t)-f(a)
$$

reduces to

$$
\begin{aligned}
& y(t)=\tilde{y}+\int_{a}^{t} d P z+g(t)-g(a), \\
& z(t)=\tilde{z}+\int_{a}^{t} d Q y+h(t)-h(a)
\end{aligned}
$$

## Second order measure equations

Let

$$
A(t)=\left(\begin{array}{cc}
0 & P(t) \\
Q(t) & 0
\end{array}\right), \quad f(t)=\binom{g(t)}{h(t)} \quad \text { and } \quad \tilde{x}=\binom{\tilde{y}}{\tilde{z}}
$$

where $P, Q \in B V\left([a, b], \mathbb{R}^{n \times n}\right), g, h \in B V\left([a, b], \mathbb{R}^{n}\right)$ and $\tilde{y}, \tilde{z} \in \mathbb{R}^{n}$.
Then

$$
x(t)=\tilde{x}+\int_{a}^{t} d A x+f(t)-f(a)
$$

reduces to

$$
\begin{aligned}
& y(t)=\tilde{y}+\int_{a}^{t} d P z+g(t)-g(a) \\
& z(t)=\tilde{z}+\int_{a}^{t} d Q y+h(t)-h(a)
\end{aligned}
$$

and $\quad \operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \quad$ iff

$$
\operatorname{det}\left[I-\Delta^{-} Q(t) \Delta^{-} P(t)\right] \neq \text { Ofor } t \in(a, b]
$$

or

$$
\operatorname{det}\left[I-\Delta^{-} P(t) \Delta^{-} Q(t)\right] \neq \text { Ofor } t \in(a, b]
$$

## Second order measure equations

## Consider systems

$$
\left.\begin{array}{l}
y_{k}(t)=\widetilde{y}_{k}+\int_{a}^{t} d P_{k} z_{k}+g_{k}(t)-g_{k}(a), \\
z_{k}(t)=\widetilde{z}_{k}+\int_{a}^{t} d Q_{k} y_{k}+h_{k}(t)-h_{k}(a), \\
y(t)=\widetilde{y}+\int_{a}^{t} d P z+g(t)-g(a),  \tag{S}\\
z(t)=\tilde{z}+\int_{a}^{t} d Q y+h(t)-h(a) .
\end{array}\right\}
$$

## Second order measure equations

## Consider systems

$$
\left.\begin{array}{l}
y_{k}(t)=\widetilde{y}_{k}+\int_{a}^{t} d P_{k} z_{k}+g_{k}(t)-g_{k}(a), \\
z_{k}(t)=\widetilde{z}_{k}+\int_{a}^{t} d Q_{k} y_{k}+h_{k}(t)-h_{k}(a), \\
y(t)=\widetilde{y}+\int_{a}^{t} d P z+g(t)-g(a), \\
z(t)=\tilde{z}+\int_{a}^{t} d Q y+h(t)-h(a) . \tag{S}
\end{array}\right\}
$$

## Corollary

Assume: $P, Q \in B V\left([a, b], \mathbb{R}^{n \times n}\right), g, h \in B V\left([a, b], \mathbb{R}^{n}\right), \tilde{y}, \tilde{z} \in \mathbb{R}^{n}$,

- $\operatorname{det}\left[I-\Delta^{-} Q(t) \Delta^{-} P(t)\right] \neq 0$ or $\operatorname{det}\left[I-\Delta^{-} P(t) \Delta^{-} Q(t)\right] \neq 0$ for $\left.t \in(a, b]\right)$,
- $\quad \lim _{k \rightarrow \infty}\left\|\widetilde{y}_{k}-\widetilde{y}\right\|_{Y}=0, \quad \lim _{k \rightarrow \infty}\left\|\widetilde{z}_{k}-\widetilde{z}\right\|_{Y}=0$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} P_{k}+\operatorname{var}_{a}^{b} Q_{k}\right)\left(\left\|P_{k}-P\right\|_{\infty}+\left\|Q_{k}-Q\right\|_{\infty}\right)=0$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} P_{k}+\operatorname{var}_{a}^{b} Q_{k}\right)\left(\left\|g_{k}-g\right\|_{\infty}+\left\|h_{k}-h\right\|_{\infty}\right)=0$.


## Second order measure equations

## Consider systems

$$
\left.\begin{array}{l}
y_{k}(t)=\widetilde{y}_{k}+\int_{a}^{t} d P_{k} z_{k}+g_{k}(t)-g_{k}(a), \\
z_{k}(t)=\tilde{z}_{k}+\int_{a}^{t} d Q_{k} y_{k}+h_{k}(t)-h_{k}(a), \\
y(t)=\tilde{y}+\int_{a}^{t} d P z+g(t)-g(a), \\
z(t)=\tilde{z}+\int_{a}^{t} d Q y+h(t)-h(a) . \tag{S}
\end{array}\right\}
$$

## Corollary

Assume: $P, Q \in B V\left([a, b], \mathbb{R}^{n \times n}\right), g, h \in B V\left([a, b], \mathbb{R}^{n}\right), \tilde{y}, \tilde{z} \in \mathbb{R}^{n}$,

- $\operatorname{det}\left[I-\Delta^{-} Q(t) \Delta^{-} P(t)\right] \neq 0$ or $\operatorname{det}\left[I-\Delta^{-} P(t) \Delta^{-} Q(t)\right] \neq 0$ for $\left.t \in(a, b]\right)$,
- $\quad \lim _{k \rightarrow \infty}\left\|\widetilde{y}_{k}-\tilde{y}\right\|_{Y}=0, \quad \lim _{k \rightarrow \infty}\left\|\tilde{z}_{k}-\tilde{z}\right\|_{Y}=0$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} P_{k}+\operatorname{var}_{a}^{b} Q_{k}\right)\left(\left\|P_{k}-P\right\|_{\infty}+\left\|Q_{k}-Q\right\|_{\infty}\right)=0$,
- $\lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{a}^{b} P_{k}+\operatorname{var}_{a}^{b} Q_{k}\right)\left(\left\|g_{k}-g\right\|_{\infty}+\left\|h_{k}-h\right\|_{\infty}\right)=0$.

THEN:

- (S) has a unique solution $(y, z) \in B V\left([a, b], \mathbb{R}^{n}\right) \times B V\left([a, b], \mathbb{R}^{n}\right)$ on $[a, b]$,
- (S-k) has a unique solution $\left.\left(y_{k}, z_{k}\right) \in G\left([a, b], \mathbb{R}^{n}\right) \times G\left([a, b], \mathbb{R}^{n}\right)\right)$ on $[a, b]$ for $k$ sufficiently large,
- $\lim _{k \rightarrow \infty}\left\|y_{k}-y\right\|_{\infty}+\left\|z_{k}-z\right\|_{\infty}=0$.


## Meng and Zhang:

$$
\begin{equation*}
d y^{\bullet}+d\left[\mu_{k}(t)\right] y=0, \quad y(0)=\tilde{y}, y^{\bullet}(0)=\tilde{z}, k \in \mathbb{N}, \tag{mz-k}
\end{equation*}
$$

where $\mu_{k} \in B V[a, b]$ are right-continuous, $\widetilde{y}, \tilde{z} \in \mathbb{R}$ and $y^{\bullet}$ is the generalized right-derivative of $y$.
They proved that the weak* convergence $\mu_{k} \rightarrow \mu$ yields

$$
y_{k} \rightrightarrows y, y_{k}^{\bullet} \rightarrow y^{\bullet} \text { in weak }{ }^{\star} \text { topology and } y_{k}^{\bullet}(1) \rightarrow y^{\bullet}(1)
$$

(S-k) reduce to (mz-k) when

$$
n=1,[a, b]=[0,1], P_{k}(t)=t, Q_{k}(t)=\mu_{k}(t) \text { and } g_{k}, h_{k} \text { are constant. }
$$

Similarly, (S) reduces to

$$
\begin{align*}
& d y^{\bullet}+d[\mu(t)] y=0, \quad y(0)=\widetilde{y}, y^{\bullet}(0)=\widetilde{z}  \tag{mz}\\
& P(t)=t, Q(t)=\mu(t) \text { and } g, h \text { are constant. }
\end{align*}
$$

if

As existence conditions are obviously satisfied, by our Corollary we have

$$
\lim _{k \rightarrow \infty}\left(\left\|y_{k}-y\right\|_{\infty}+\left\|y_{k}^{\bullet}-y^{\bullet}\right\|_{\infty}\right)=0 \quad \text { whenever } \quad \lim _{k \rightarrow \infty}\left(1+\operatorname{var}_{0}^{1} \mu_{k}\right)\left\|\mu_{k}-\mu\right\|_{\infty}=0
$$

## 9. TIME SCALES

## Time scale calculus

Time scales: nonempty and closed subset $\mathbb{T}$ of $\mathbb{R}$.

## Time scale calculus

Time scales: nonempty and closed subset $\mathbb{T}$ of $\mathbb{R}$.
For $a, b \in \mathbb{T}$, we set $[a, b]_{\mathbb{T}}=[a, b] \cap \mathbb{T}$.

$$
\begin{array}{ll}
\sigma(t):=\inf ((t, b] \cap \mathbb{T}) & \text { is the forward jump operator, } \\
\rho(t):=\sup ([a, t) \cap \mathbb{T}) & \text { is the backward jump operator }
\end{array}
$$

and

$$
\mu(t)=\sigma(t)-t \quad \text { is the graininess of the time scale } .
$$

## Time scale calculus

Time scales: nonempty and closed subset $\mathbb{T}$ of $\mathbb{R}$.
For $a, b \in \mathbb{T}$, we set $[a, b]_{\mathbb{T}}=[a, b] \cap \mathbb{T}$.

$$
\begin{array}{ll}
\sigma(t):=\inf ((t, b] \cap \mathbb{T}) & \text { is the forward jump operator, } \\
\rho(t):=\sup ([a, t) \cap \mathbb{T}) & \text { is the backward jump operator }
\end{array}
$$

and

$$
\mu(t)=\sigma(t)-t \quad \text { is the graininess of the time scale. }
$$

For a given $\delta>0$, a division $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\nu(D)}\right\} \subset[a, b]_{\mathbb{T}}$ of $[a, b]$ is said to be $\delta$-fine if either $\quad \alpha_{i}-\alpha_{i-1}<\delta \quad$ or $\quad \rho\left(\alpha_{i}\right)=\alpha_{i-1}$.

## Time scale calculus

Time scales: nonempty and closed subset $\mathbb{T}$ of $\mathbb{R}$.
For $a, b \in \mathbb{T}$, we set $[a, b]_{\mathbb{T}}=[a, b] \cap \mathbb{T}$.

$$
\begin{array}{ll}
\sigma(t):=\inf ((t, b] \cap \mathbb{T}) & \text { is the forward jump operator, } \\
\rho(t):=\sup ([a, t) \cap \mathbb{T}) & \text { is the backward jump operator }
\end{array}
$$

and

$$
\mu(t)=\sigma(t)-t \quad \text { is the graininess of the time scale. }
$$

For a given $\delta>0$, a division $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\nu(D)}\right\} \subset[a, b]_{\mathbb{T}}$ of $[a, b]$ is said to be $\delta$-fine if

$$
\text { either } \quad \alpha_{i}-\alpha_{i-1}<\delta \quad \text { or } \quad \rho\left(\alpha_{i}\right)=\alpha_{i-1} .
$$

We also say that $P=(D, \xi)$ is a tagged division of $[a, b]_{\mathbb{T}}$ if

$$
\xi=\left\{\xi_{1}, \ldots \xi_{\nu(D)}\right\} \quad \text { and } \quad \xi_{i} \in\left[\alpha_{i-1}, \alpha_{i}\right) \cap \mathbb{T} \quad \text { for } i \in\{1, \ldots, \nu(D)\} .
$$

Then

$$
I=\int_{a}^{b} f(t) \Delta t
$$

iff for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left|\sum_{i=1}^{\nu(D)} f\left(\xi_{i}\right)\left(\alpha_{i}-\alpha_{i-1}\right)-I\right|<\varepsilon \text { for all } \delta \text {-fine tagged divisions } P=(D, \xi) \text { of }[a, b]_{\mathbb{T}} .
$$

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T})$

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T}) \quad$ (recall: $\sigma(t):=\inf ((t, b] \cap \mathbb{T})$ ).

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T}) \quad$ (recall: $\sigma(t):=\inf ((t, b] \cap \mathbb{T})$ ).
Proposition (Slavík)
ASSUME: $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ is rd-continuous,

$$
F_{1}(t)=\int_{a}^{t} f(s) \Delta s \quad \text { and } \quad F_{2}(t)=\int_{a}^{t} f(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { for } t \in[a, b] .
$$

THEN: $\quad F_{2}=F_{1} \circ \tilde{\sigma}$.

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T}) \quad$ (recall: $\sigma(t):=\inf ((t, b] \cap \mathbb{T})$ ).

## Proposition (Slavík)

ASSUME: $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ is rd-continuous,

$$
F_{1}(t)=\int_{a}^{t} f(s) \Delta s \quad \text { and } \quad F_{2}(t)=\int_{a}^{t} f(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { for } t \in[a, b]
$$

THEN: $F_{2}=F_{1} \circ \tilde{\sigma}$.
Consider equation

$$
\begin{equation*}
y(t)=\tilde{y}+\int_{a}^{t}[P(s) y(s)+h(s)] \Delta s, \quad t \in[a, b]_{\mathbb{T}} \tag{D}
\end{equation*}
$$

where $\quad P:[a, b]_{\mathbb{T}} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ and $h:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ are rd-continuous on $[a, b]_{\mathbb{T}}$, and put

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T}) \quad($ recall: $\sigma(t):=\inf ((t, b] \cap \mathbb{T}))$.

## Proposition (Slavík)

ASSUME: $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ is rd-continuous,

$$
F_{1}(t)=\int_{a}^{t} f(s) \Delta s \quad \text { and } \quad F_{2}(t)=\int_{a}^{t} f(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { for } t \in[a, b]
$$

THEN: $\quad F_{2}=F_{1} \circ \tilde{\sigma}$.
Consider equation

$$
\begin{equation*}
y(t)=\tilde{y}+\int_{a}^{t}[P(s) y(s)+h(s)] \Delta s, \quad t \in[a, b]_{\mathbb{T}} \tag{D}
\end{equation*}
$$

where $\quad P:[a, b]_{\mathbb{T}} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ and $h:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ are rd-continuous on $[a, b]_{\mathbb{T}}$, and put $A(t)=\int_{a}^{t} P(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad$ a $\quad f(t)=\int_{a}^{t} h(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad$ for $t \in[a, b]$.

## Linear dynamical equations on time scales

Put $\widetilde{\sigma}(t):=\inf ([t, b] \cap \mathbb{T}) \quad($ recall: $\sigma(t):=\inf ((t, b] \cap \mathbb{T}))$.

## Proposition (Slavík)

ASSUME: $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ is rd-continuous,

$$
F_{1}(t)=\int_{a}^{t} f(s) \Delta s \quad \text { and } \quad F_{2}(t)=\int_{a}^{t} f(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { for } t \in[a, b] .
$$

THEN: $\quad F_{2}=F_{1} \circ \tilde{\sigma}$.
Consider equation

$$
\begin{equation*}
y(t)=\widetilde{y}+\int_{a}^{t}[P(s) y(s)+h(s)] \Delta s, \quad t \in[a, b]_{\mathbb{T}} \tag{D}
\end{equation*}
$$

where $\quad P:[a, b]_{\mathbb{T}} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ and $h:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ are rd-continuous on $[a, b]_{\mathbb{T}}$, and put

$$
A(t)=\int_{a}^{t} P(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { a } \quad f(t)=\int_{a}^{t} h(\widetilde{\sigma}(s)) d[\widetilde{\sigma}(s)] \quad \text { for } t \in[a, b]
$$

## Theorem (Slavík)

- If $y:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ is a solution of (LD), then $x=y \circ \tilde{\sigma}$ is a solution of

$$
\begin{equation*}
x(t)=\tilde{y}+\int_{a}^{t} d A x+f(t)-f(a), \quad t \in[a, b] . \tag{L}
\end{equation*}
$$

- If $x$ is a solution of (GL) and $y=\left.x\right|_{\mathbb{T}}$, then $y$ is a solution of (LD).

$$
\begin{align*}
& y(t)=\widetilde{y}+\int_{a}^{t}[P(s) y(s)+h(s)] \Delta s, \quad t \in[a, b]_{\mathbb{T}}  \tag{LD}\\
& y(t)=\tilde{y}_{k}+\int_{a}^{t}\left[P_{k}(s) y(s)+h_{k}(s)\right] \Delta s, \quad t \in[a, b]_{\mathbb{T}} \tag{LD-k}
\end{align*}
$$

## Corollary

ASSUME: $P, P_{k}:[a, b]_{\mathbb{T}} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right), h, h_{k}:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}^{n}$ for $k \in \mathbb{N}$ are rd-continuous in $[a, b]_{\mathbb{T}}$,

$$
\begin{aligned}
& \alpha_{k}=\sup _{t \in[a, b]_{\mathbb{T}}}\left\|P_{k}(t)\right\|_{L\left(\mathbb{R}^{n}\right)}+\sup _{t \in[a, b]_{\mathbb{T}}}\left\|h_{k}(t)\right\|_{\mathbb{R}^{n}} \text { for } k \in \mathbb{N}, \\
& \lim _{k \rightarrow \infty}\left\|\widetilde{y}_{k}-\widetilde{y}\right\|_{\mathbb{R}^{n}}=0, \\
& \lim _{k \rightarrow \infty} \sup _{t \in[a, b]_{\mathbb{T}}}\left\|\int_{a}^{t}\left(P_{k}(s)-P(s)\right) \Delta s\right\|_{L\left(\mathbb{R}^{n}\right)}\left[1+\alpha_{k}\right]=0, \\
& \lim _{k \rightarrow \infty} \sup _{t \in[a, b]_{\mathbb{T}}}\left\|\int_{a}^{t}\left(h_{k}(s)-h(s)\right) \Delta s\right\|_{L\left(\mathbb{R}^{n}\right)}\left[1+\alpha_{k}\right]=0 .
\end{aligned}
$$

THEN: (LD) has a solution $y$, (LD-k) has a solution $y_{k}$ for $k \in \mathbb{N}$ sufficiently large and

$$
\lim _{k \rightarrow \infty} \sup _{t \in[a, b]_{\mathbb{T}}}\left\|y_{k}(t)-y(t)\right\|_{\mathbb{R}^{n}}=0
$$

## REFERENCES

## References

G.A. Monteiro, A. Slavík and M. Tvrdý.

Kurzweil-Stieltjes integral and its applications.
(to be published by World Scientific, preliminary version available from

- Preface
- 1. Introduction
- 2. Functions of bounded variation
- 3. Absolutely continuous functions
- 4. Regulated functions
- 5. Riemann-Stieltjes integral
- 6. Kurzweil-Stieltjes integral
- 7. Generalized linear differential equations
- 8. Kurzweil-Stieltjes integral and functional analysis


## References

- G.A. Monteiro, U.M. Hanung and M. Tvrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral. Monatshefte für Mathematik 180 (2016) 409-434.
- G.A. Monteiro and M. Tvrdý Continuous dependence of solutions of abstract generalized linear differential equations with potential converging uniformly with a weight. Boundary Value Problems 2014 (71) (2014) 1-18.
- G.A. Monteiro and M. Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on and parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303.
- G.A. Monteiro and M. Tvrdý. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem. 137 (2012), 365-381.
- Z. Halas, G. Monteiro and M. Tvrdý. Emphatic convergence and sequential solutions of generalized linear differential equations. Mem. Differential Equations Math. Phys. 54 (2011), 27-49.
- Z. HALAS. Continuous Dependence of solutions of generalized linear ordinary differential Equations on a parameter. Mathematica Bohemica 132 (2007), 205-218.


## References

- G.A. Monteiro, U.M. Hanung and M. Tvrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral. Monatshefte für Mathematik 180 (2016) 409-434.
- G.A. Monteiro and M. Tvrdý Continuous dependence of solutions of abstract generalized linear differential equations with potential converging uniformly with a weight. Boundary Value Problems 2014 (71) (2014) 1-18.
- G.A. Monteiro and M. Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on and parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303.
- G.A. Monteiro and M. Tvrdý. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem. 137 (2012), 365-381.
- Z. Halas, G. Monteiro and M. Tvrdý. Emphatic convergence and sequential solutions of generalized linear differential equations. Mem. Differential Equations Math. Phys. 54 (2011), 27-49.
- Z. HALAS. Continuous Dependence of solutions of generalized linear ordinary differential Equations on a parameter. Mathematica Bohemica 132 (2007), 205-218.
- M. Ashordia. On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Proc. Georgian Acad.Sci.Math. 1 (1993), No. 4, 385-394.
- Š. SchWABIk. Generalized Ordinary Differential Equations. World Scientific, 1992.
- Š. Schwabik. Abstract Perron-Stieltjes integral. Math. Bohem. 121(1996), 425-447.
- Š. SchWABIK. Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457 and 125 (2000), 431-454.


## References

- J. Kurzweil and Z. Vorel: Continuous dependence of solutions of differential equations on a parameter. Czechoslovak Math. J. 7 (82) (1957), 568-583.
- J. KURZWEIL. Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (82) (1957), 418-449.
- J. Kurzweil. Generalized ordinary differential equations (Not Absolutely Continuous Solutions). Series in Real Analysis-Vol. 11, World Scientific, Singapore, 2012.
- Š Schwabik, M. Tvrdý and O. Vejvoda. Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia and Reidel. Praha and Dordrecht, 1979.
- T.H. Hildebrandt. Theory of Integration. Academic Press, New York \& London, 1963.
- R.M. Dudley and R. Norvaiša. Concrete functional calculus. Springer Monographs in Mathematics. Springer, New York, 2011.
- CH.S. HönIg. Volterra Stieltjes-Integral Equations. North Holland \& American Elsevier, Mathematics Studies 16, Amsterdam \& New York, 1975.
- R.M. McLeOd. The generalized Riemann integral. Carus Monograph, No.2, Mathematical Association of America, Washington, 1980.


## References

- J. Kurzweil and Z. Vorel: Continuous dependence of solutions of differential equations on a parameter. Czechoslovak Math. J. 7 (82) (1957), 568-583.
- J. KURZWEIL. Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (82) (1957), 418-449.
- J. Kurzweil. Generalized ordinary differential equations (Not Absolutely Continuous Solutions). Series in Real Analysis-Vol. 11, World Scientific, Singapore, 2012.
- Š Schwabik, M. Tvrdý and O. Vejvoda. Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia and Reidel. Praha and Dordrecht, 1979.
- T.H. Hildebrandt. Theory of Integration. Academic Press, New York \& London, 1963.
- R.M. Dudley and R. Norvaiša. Concrete functional calculus. Springer Monographs in Mathematics. Springer, New York, 2011.
- CH.S. HönIg. Volterra Stieltjes-Integral Equations. North Holland \& American Elsevier, Mathematics Studies 16, Amsterdam \& New York, 1975.
- R.M. McLeod. The generalized Riemann integral. Carus Monograph, No.2, Mathematical Association of America, Washington, 1980.
- Z. OpIAL. Continuous Parameter Dependence in Linear Systems of Differential Equations. J. Differential Equations 3 (1967), 571-579.
- G. Meng and M. Zhang. Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differential Equations 254 (2013), 2196-2232.
- M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001.
- A. SLAVík. Dynamic equations on time scales and generalized ordinary differential equations. J. Math. Anal. Appl. 385 (2011), 534-550.

