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1. NOTATIONS



Notations

−∞ < a < b <∞,

function f : [a, b]→ R is regulated on [a, b], if

f (s+):= lim
τ→s+

f (τ)∈R for s∈ [a, b), f (t−):= lim
τ→t−

f (τ)∈R for t ∈ (a, b].

∆+f (s)= f (s+)− f (s), ∆−f (t) = f (t)− f (t−), ∆f (t) = f (t+)− f (t−).

G[a, b] (resp. G) is the space of regulated functions on [a, b].
(G is Banach space with respect to the norm ‖f‖∞= supt ∈ [a,b] ‖f (t)‖).

BV = BV [a, b] =
{

f : [a, b]→ R : var b
a f <∞

}
is the space of functions

with bounded variation.

function f : [a, b]→ R is finite step function, if there is a division
a =α0 <α1 <α2 < . . . <αm = b of [a, b] such that f is constant on
every (αj−1, αj),
S[a, b] (or S) is the set of finite step functions on [a, b].

Regulated functions are uniform limits of finite step functions,
they have at most countably many points of discontinuity.
Every function f of bounded variation is a difference f = g − h
of nondecreasing functions g and h.

S[a, b]⊂BV [a, b]⊂G[a, b].



2. DEFINITION OF KS INTEGRAL



Definition of KS integral

Notation
Positive functions δ: [a, b]→ (0,∞) are gauges on [a, b].

Couples P =(α, ξ) of ordered finite sets are partitions of [a, b] if
α = {α0 < α1 < . . . < αν(P)=b} is a division of [a, b] and ξ = {ξ1, . . . , ξν(P)}
are its tags, i.e. ξj ∈ [αj−1, αj ] for all j .

P =(α, ξ) is δ-fine if [αj−1, αj ] ⊂ (ξj − δ(ξj ), ξj + δ(ξj )) for all j .

For f : [a, b] → R, g : [a, b] → R, P = (α, ξ) we set

S(f , dg, P) =

ν(P)X
j=1

f (ξj ) [g(αj )− g(αj−1)] .

Definition

I =

Z b

a
f d g ⇐⇒

8>>><>>>:
for every ε > 0 there is a gauge δ on [a, b] such that���S(f , dg, P)− I

��� < ε

for every δ − fine partition P.Z c

c
f d g = 0,

Z a

b
f d g = −

Z b

a
f d g.



Definition of the KS integral

KS integral has usual linear properties and is an additive function of intervals.

Z b

a
f d g ∈R =⇒

��� Z b

a
f d g

���≤‖f‖∞ (var b
a g) ,

��� Z b

a
f d g

��� ≤ 2 ‖f‖BV ‖g‖∞.

RS ⊂ KS.

f ∈G[a, b], g ∈G[a, b] =⇒

Both integrals
Z b

a
f d g and

Z b

a
g d f exist if one of the functions f , g is a finite step

function.
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3. FINITE STEP FUNCTIONS



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)].

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0.

g : [a, b] → R regulated, τ ∈ [a, b] and f = χ[τ,b] =⇒
Z b

τ
f d g = g(b)− g(τ).

Let δ(x) =

(
1
4 (τ − x) for x < τ ,

η for x = τ

and let P =
�
α, ξ

�
be δ-fine. Then
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8><>:
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4. EXISTENCE OF KS INTEGRAL



Existence of the KS integral
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Sketch of the proof

Let ε > 0 be given.

Choose finite step functions gk in such a way that gk ⇒ g on [a, b].

Let ‖gk − g`‖∞ < ε for k , `≥ k0.

Then ��� Z b

a
f d [gk − g`]

��� ≤ 2 ‖gk − g`‖∞ ‖f‖BV ≤ 4 ε ‖f‖BV for k , `≥ k0,

i.e.
nZ b

a
f d gk

o
is Cauchy.

Hence lim
k→∞

Z b

a
f d gk = I ∈R.

Choose K ≥ k0 and a gauge δ on [a, b] in such a way that

��� Z b

a
f d gK − I

���< ε and
���S(f , dgK , P)−

Z b

a
f d gK

���< ε for every δ-fine P .

Then ���S(f , dg, P)− I
��� ≤ ���S(f , dg, P)−S(f , dgK , P)

���+ ���S(f , dgK , P)−
Z b

a
f d gK

���
+
��� Z b

a
f d gK − I

���< 2ε (‖f‖BV +1)

for every δ-fine P.



Existence of the KS integral

Theorem

ASSUME: f ∈G[a, b], g ∈G[a, b] and at least one of the functions f , g has a bounded variation.

THEN: both integrals
Z b

a
f d g and

Z b

a
g d f exist.

KS = PS.

(LS)

Z
[c,d ]

f d g ∈R =⇒

Z d

c
f d g ∈R and (LS)

Z
[c,d ]

f d g = f (c)∆−g(c)+

Z d

c
f d g + f (d) ∆+g(d).

Z b

a
f d g ∈R, a≤ c≤ d ≤b =⇒Z b

a
f χ[c,d ] d g = f (c)∆−g(c)+

Z d

c
f d g + f (d)∆+g(d).
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Existence of the KS integral

If f ∈BV [a, b], g ∈G[a, b], D is the set of discontinuity points of the function f in [a, b]
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Z b

a
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Z b
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X
D

�
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�
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Z b
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X
D
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5. PROPERTIES OF KS INTEGRAL



Convergence theorems

ASSUME:

f , fk ∈G[a, b], g ∈BV [a, b] for k ∈N,

fk ⇒ f .

THEN:
Z t

a
fk d g ⇒

Z t

a
f d g on [a, b].

ASSUME:

f ∈BV [a, b], g, gk ∈G[a, b] for k ∈N,

gk ⇒ g.

THEN:
Z t

a
f d gk ⇒

Z t

a
f d g on [a, b].

ASSUME:

f , fk ∈G[a, b], g, gk ∈BV [a, b] for k ∈N,

fk ⇒ f , gk ⇒ g,

α∗ := sup{var b
a gk : k ∈N}<∞.

THEN:
Z t

a
fk d gk ⇒

Z t

a
f d g on [a, b].



Convergence theorems

Theorem

ASSUME:

f , fk ∈G[a, b], g, gk ∈BV [a, b] for k ∈N,

fk ⇒ f , gk ⇒ g,

α∗ := sup{var b
a gk ; k ∈N}<∞.

THEN:
Z t

a
fk d gk ⇒

Z t

a
f d g on [a, b].

PROOF: Let ε > 0, Choose k0 ∈N and eϕ ∈ S[a, b] in such a way that

‖f − eϕ‖∞ < ε/2 and ‖fk − f‖∞ < ε/2, ‖gk − g‖∞ <
ε

2 ‖eϕ‖BV
for k ≥ k0 .

Then k ≥ k0 =⇒ ‖fk − eϕ‖∞ < ε and��� Z t

a
fk d gk −

Z t

a
f d g

���
≤
��� Z t

a

�
fk − eϕ� d gk

���+ ��� Z t

a
eϕ d[gk − g]

���+ ��� Z t

a

�eϕ− f
�

d g
���

≤ ‖fk − eϕ‖∞ (varb
a gk )+ 2 ‖eϕ‖BV ‖gk − g‖∞+ ‖eϕ− f‖∞ (varb

a g)

≤
�
α∗+ 1 + 1

2 varb
a g
�
ε = K ε for every t ∈ [a, b]. �



Convergence theorems

Bounded convergence (Osgood)

ASSUME: f ∈G[a, b], {fn}⊂G[a, b] and

‖fn‖∞≤M <∞ for n∈N,

lim
n→∞

fn(x) = f (x) for x ∈ [a, b].

THEN:

lim
k→∞

Z b

a
fn d g =

Z b

a
f d g for every g ∈BV [a, b].

Standard proof is based on

LEMMA (Arzelà) Let
�
{Jk,j} : k ∈N, j ∈Uk} be subintervals of [a, b] such that:

for each k ∈N, the set of indices Uk is finite,

the intervals from {Jk,j : j ∈Uk} are mutually disjoint,X
j ∈Uk

|Jk,j | > c > 0.

Then there exist {k`}⊂N and {j`}⊂N such that

j` ∈Uk`
for `∈N and

\
`∈N

Jk`,j` 6= ∅.



Variation over elementary sets

DEFINITIONS

For intervals J ⊂ [a, b], the sets D = {α0, α1, . . . , αm} such that

α0 < α1 < · · · < αm and αj ∈ J for j = 0, 1, . . . , m

are divisions of J. D(J) is the set of all divisions of J.

For f : J →R we put
var J f = sup {V (f , D) : D ∈D(J)} , while var∅ f = var[c] f = 0 for c ∈ [a, b].

A bounded subset E of R is an elementary set if it is a finite union of intervals.
For A ⊂ R, E(A) is the set of all elementary subsets of A.

A collection of intervals {Jk : k = 1, 2, . . . , m} is a minimal decomposition of E if
E = ∪m

k=1Jk , while Jk ∪ J` is not an interval whenever k 6= `.

For f : [a, b] → X and E ∈E([a, b]) with a minimal decomposition {Jk : k = 1, . . . , m},
we define var(f, E) =

Pm
k=1 varJk

f .

Proposition

Let c, d ∈ [a, b], c < d . Then

var[c,d ] f = var d
c f , var[c,d) f = lim

δ→ 0+
var d−δ

c f = sup
t∈[c,d)

var t
c f ,

var(c,d) f = lim
δ→ 0+

var d−δ
c+δ f , var(c,d ] f = lim

δ→ 0+
var d

c+δ f = sup
t∈(c,d ]

var d
t f .

If f ∈ BV ((c, d)) and f (c+), f (d−) exist, then f ∈ BV [c, d ] and

var d
c f = var(c,d) f + ‖∆+f (c)‖X + ‖∆−f (d)‖X .



Bounded Convergence Theorem

Lewin (1986)

Let {An} be bounded subsets of [a, b] such that

An+1 ⊂ An and
\

An = ∅.
Put

αn = sup{m(E): E ∈E(An)} for n∈N.

Then lim
n→∞

αn = 0.

LEMMA

Let f ∈BV [a, b]∩C[a, b] and let {An}⊂ [a, b] be bounded and such that

An+1 ⊂ An and
\

An = ∅.
Put

αn = sup{ var(f , E): E ∈E(An)} for n∈N.

Then lim
n→∞

αn = 0.



Bounded Convergence Theorem
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Let {An} be bounded subsets of [a, b] such that
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\
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Put

αn = sup{m(E): E ∈E(An)} for n∈N.
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Let f ∈BV [a, b]∩C[a, b] and let {An}⊂ [a, b] be bounded and such that

An+1 ⊂ An and
\
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Put

αn = sup{ var(f , E): E ∈E(An)} for n∈N.
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KS integral over elementary sets

DEFINITION

Let f , g: [a, b] → R, and E ∈E([a, b]). Then

Z
E

f d g =

Z b

a
(f χE ) d g

provided the integral on the right-hand side exists.

Propositions

Let E1, E2 ∈E([a, b]), E1 ∩ E2 = ∅, f , g : [a, b] → R

and let the integrals
Z

Ej

f d g, j = 1, 2, exist. ThenZ
E1∪E2

f d g =

Z
E1

f d g +

Z
E2

f d g.

Let J = (c, d) and let
Z

J
f d g exists. Then��� Z

J
f d g

��� ≤ � var(c,d) g
��

sup
t ∈ (c,d)

|g(t)|
�
.

Let J = [c, d), and let
Z

J
f d g and g(c−) exist. Then��� Z

J
f d g

��� ≤ � var[c,d) g
��

sup
t ∈ [c,d)

|g(t)|
�

+ |∆−g(c)| |g(c)|.



LEMMA

Let f ∈BV [a, b] be continuous on [a, b] and let {An} be bounded subsets of [a, b]

such that An+1 ⊂ An and
\

An = ∅. Put

αn = sup{ var(f , E): E elementary subset of An } for n∈N.

Then lim
n→∞

αn = 0.

Proof.

{αn} is decreasing. Assume that αn 6→ 0. Then, there is ε > 0 such that

αn > ε for every n ∈ N.

Hence, for each n ∈ N, there is a closed elementary subset En of An such that

αn −
ε

2n
< var(f , En).

Define Hn =
n\

j=1

Ej for n ∈ N. Then Hn ⊂ An is closed. We will show that Hn 6= ∅. Obviously,

var(f , F ) + var(f , En) = var(f , F ∪ En) ≤ αn for any elementary subset F of An \En.

Thus, var(f , F ) < ε/2n and since any elementary subset E of An \ Hn can be written as

E = (E \ E1) ∪ (E \ E2) ∪ . . . ∪ (E \ En),

where E \ Ej are elementary subsets of Aj \ Ej for j = 1, . . . , n, we get

var(f , E) < ε for every elementary subset E of An \Hn.

As αn > ε, this means that there is an elementary subset E of Hn with var(f , E) > ε.

Therefore, Hn 6= ∅ and {Hn} are non-empty, closed and bounded sets such that Hn+1 ⊆ Hn.

By Cantor’s intersection theorem we get
T

n Hn 6= ∅.
This contradicts our assumption

T
n An = ∅ and hence, lim

n→∞
αn = 0.
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Sketch of the proof of Bounded Convergence Theorem

Let g ∈BV ∩C, ‖fn‖∞ ≤ K < ∞ for n∈N and fn(t) → 0 on [a, b].
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a g = 0 ) ⇒

Z b

a
fn d g =

Z b

a
f d g = 0 for all n∈N.

b) Let var b
a g 6= 0, ε > 0 and An =

�
t ∈ [a, b] : ∃m ≥ n such that ‖fn(t)‖∞ ≥

ε

6 var b
a g

�
.

Then An+1 ⊃ An,
T

n An = ∅ and αn = sup {var(g, E) : E ∈E(An)} ↘ 0 due to LEMMA.

Hence, αn <
ε

6 K
for n ≥ N, i.e.

(1) var(g, E) <
ε

6 K
for E ∈E(An) and n≥N.
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Integration by parts and substitution

Integration by parts

Let f ∈G[a, b], g ∈BV [a, b]. Then both integralsZ b

a
f d g and

Z b

a
g d f

exist and it holds

Z b

a
f d g +

Z b

a
g d f = f (b) g(b)− f (a) g(a)−

X
a≤t < b

∆+f (t)∆+g(t) +
X

a < t≤b

∆−f (t)∆−g(t) .

Substitution

Let h∈BV [a, b], f : [a, b]→R and g: [a, b]→R are such that
Z b

a
f d g exists.

Then, if one from the integralsZ b

a
h(t) d

h Z t

a
f d g

i
,

Z b

a
h f d g ,

exists, the same is true also for the remaining one andZ b

a
h(t) d

h Z t

a
f d g

i
=

Z b

a
h f d g .



Saks-Henstock Lemma

The Saks-Henstock lemma is an indispensable tool in the study of deeper properties of the
Kurzweil-Stieltjes integral.

Saks-Henstock Lemma

ASSUME:
R b

a f d g exists, ε > 0 is given and δε is a gauge on [a, b] such that���S(P)−
Z b

a
f d g

��� < ε for all δε-fine partitions P of [a, b],

THEN: ��� nX
j=1

�
f (θj ) (g(tj )− g(sj ))−

Z tj

sj

f d g
���� ≤ ε

holds for every system
�
([sj , tj ], θj ): j ∈{1, . . . , n}

	
such that

a ≤ s1 ≤ θ1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ θn ≤ tn ≤ b,

and

[sj , tj ] ⊂ (θj − δ(θj ), θj + δ(θj )) for j ∈{1, . . . , n}.



Saks-Henstock Lemma

Corollaries
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R b
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Z b

a
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��� < ε for all δε-fine partitions P of [a, b],

then
ν(P)X
j=1
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Z αj

αj−1

f d g
��� ≤ ε
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Z t

a
f d g is regulated on [a, b] .

In particular, if g ∈BV [a, b], then also h∈BV [a, b].

∆+h(t) = f (t)∆+g(t) for t ∈ [a, b), ∆−h(s) = f (s)∆−g(s) for s∈ (a, b].
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Hake Theorem

Theorem (Hake)Z t

a
f d g exists for every t ∈ [a, b) and lim

t→b−

�Z t

a
f d g + f (b) [g(b)− g(t)]

�
= I ∈R

=⇒
Z b

a
f d g = I.Z b

t
f d g exists for every t ∈ (a, b ] and lim

t→a+

�Z b

t
f d g + f (a) [g(t)− g(a)]

�
= I ∈R

=⇒
Z b

a
f d g = I.



6. CONTINUOUS LINEAR FUNCTIONALS



Continuous linear functionals

Riesz Theorem

Φ is continuous linear functional on C[a, b] (Φ∈ (C[a, b])∗) ⇔
there is p∈BV [a, b] such that p (a) = 0, p is right continuous on (a, b) (p∈NBV [a, b]) and

Φ(x) = Φp(x) :=

∫ b

a
x d p for every x ∈C[a, b].

Mapping p∈NBV [a, b] → Φp ∈ (C[a, b])∗ is isometric isomorphism.

GL[a, b] = {x ∈G[a, b] : x(t−) = x(t) for t ∈ (a, b)}

Continuous linear functionals on the space GL[a, b]

Φ is continuous linear functional on GL[a, b] (Φ∈ (GL[a, b])∗) ⇔
exist p∈BV [a, b] and q ∈R such that

Φ(x) = Φ(p,q)(x) := q x(a) +

∫ b

a
p d x for x ∈GL[a, b].

Mapping (p, q)∈BV [a, b]×R → Φ(p,q) ∈ (GL[a, b])∗ is isomorphism.
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there is p∈BV [a, b] such that p (a) = 0, p is right continuous on (a, b) (p∈NBV [a, b]) and

Φ(x) = Φp(x) :=

∫ b

a
x d p for every x ∈C[a, b].

Mapping p∈NBV [a, b] → Φp ∈ (C[a, b])∗ is isometric isomorphism.

eGL[a, b] = {x ∈G[a, b] : x(t−) = x(t) for t ∈ (a, b]}

Continuous linear functionals on the space eGL[a, b]

Φ is continuous linear functional on eGL[a, b] (Φ∈ (eGL[a, b])∗) ⇔
there is p∈BV [a, b] such that

Φ(x) = Φp(x) := p(b) x(b) −
∫ b

a
p d x for x ∈ G̃L[a, b].

Mapping p∈BV [a, b] → Φp ∈ (GL[a, b])∗ is isomorphism.



7.
Generalized linear

differential equations



Impulses and GLDE

(I) x ′ = P(t) x + q(t), ∆+x(τk ) = Bk x(τk )+ dk , k = 1, 2, . . . , r ,

where a = t0 < t1 < . . . < tr = b,

P ∈ L1([a, b], Rn×n), q ∈ L1([a, b], Rn), Bk ∈Rn×n, dk ∈Rn.

τ ∈ (a, b), B ∈Rn×n =⇒
Z b

a
d[χ(τ,b ](s) B] x(s) = B x(τ)

Define

A(t) =

Z t

a
P(s) d s +

rX
k=1

χ(τk ,b ](t) Bk ,

f (t) =

Z t

a
q(s) d s +

rX
k=1

χ(τk ,b ](t) dk

9>>>>=>>>>;
for t ∈ [a, b] .

Then

(I) ⇔ x(t) = x(a) +

Z t

a
d A x + f (t)− f (a), t ∈ [a, b],



Generalized linear differential equations

(L) x(t) = ex +

Z t

t0

d A x + f (t)− f (t0) , t ∈ [a, b]
�
A∈BV ([a, b], Rn×n)

�
.

Operator (L x)(t)=

Z t

t0

d A x is linear and compact on BV ([a, b], Rn) =⇒

by FREDHOLM ALTERNATIVE we have

Lemma

(L) has 1! and solution for each f ∈BV ([a, b], Rn) iff the homogeneous equation

(H) x(t) =

Z t

t0

d A x

has only trivial solution.

Lemma

Let

det
�
I−∆−A(t)

�
6= 0 and det

�
I + ∆+A(s)

�
6= 0 for each t ∈ (t0, b ] and each s∈ [a, t0) .

Then (H) has only trivial solution.
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Then (H) has only trivial solution.



Sketch of proof

∆+x(t0)= ∆+A(t0) x(t0)= 0 =⇒ x(t0+) = 0.

α(t)= vart
t0

A.

Choose δ ∈ (0, b− t0) so that 0≤α(t0 + δ)−α(t0+) < 1/2.

For t ∈ [t0, t0+δ] we have

|x(t)| ≤
Z t

t0

d [α] x = ∆+α(t0) |x(t0)|+ lim
τ→t0+

Z t

τ
d [α] |x |

= lim
τ→t0+

Z t

τ
d [α] |x | ≤

�
α(t0+δ)−α(t0+)

� �
sup

t∈[t0,t0+δ]
|x(t)|

�
≤

1

2

�
sup

t∈[t0,t0+δ]
|x(t)|

�
.

�
supt∈[t0,t0+δ] |x(t)|

�
≤ 1

2

�
supt∈[t0,t0+δ] |x(t)|

�
.

x = 0 on [t0, t0 + δ].

t∗= sup{τ ∈ (t0, b ] : x = 0 on [t0, τ ]}
x = 0 on [t0, t∗) =⇒ x(t∗−)= 0 =⇒ 0 =

�
I−∆−A(t∗)

�
x(t∗) =⇒ x(t∗)= 0

=⇒ x(t)= 0 on [0, t∗].

t∗ < b =⇒ x(t∗+) =∆∗(t) x(t∗) = 0

=⇒ x(t)= 0 on [0, t∗+ δ] for some δ ∈ (0, b− t∗) =⇒ CONTRADICTION

=⇒ x ≡ 0 on [t0, b]. �
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Existence of solutions

(L) x(t) = ex +

Z t

t0

d A x + f (t)− f (a) , t ∈ [a, b] .

Theorem

ASSUME:

A∈BV ([a, b], Rn×n) and t0 ∈ [a, b].

det
�
I−∆−A(t)

�
6= 0 for each t ∈ (t0, b ],

det
�
I + ∆+A(s)

�
6= 0 for each s∈ [a, t0).

THEN: for each f ∈BV ([a, b], Rn) and ex ∈X , (L) has 1! solution x ∈BV ([a, b], Rn).



Existence of solutions

(L) x(t) = ex +

Z t

t0

d A x + f (t)− f (a) , t ∈ [a, b] .

Theorem

ASSUME:

A∈BV ([a, b], Rn×n) and t0 ∈ [a, b].

det
�
I−∆−A(t)

�
6= 0 for each t ∈ (t0, b ],

det
�
I +∆+A(s)

�
6= 0 for each s∈ [a, t0).

THEN: for each f ∈BV ([a, b], Rn) and ex ∈X , (L) has 1! solution x ∈BV ([a, b], Rn).



Existence of solutions

(L) x(t) = ex +

Z t

t0

d A x + f (t)− f (a) , t ∈ [a, b] .

Theorem

ASSUME:

A∈BV ([a, b], Rn×n) and t0 ∈ [a, b].

det
�
I−∆−A(t)

�
6= 0 for each t ∈ (t0, b ],

det
�
I +∆+A(s)

�
6= 0 for each s∈ [a, t0).

THEN: for each f ∈BV ([a, b], Rn) and ex ∈X , (L) has 1! solution x ∈BV ([a, b], Rn).



Apriori estimates

Gronwall lemma

ASSUME: u, p : [a, b]→ [0,∞) continuous, K , L≥ 0 and u(t) ≤ K + L
Z t

a

�
p u
�

d s for t ∈ [a, b].

THEN: u(t) ≤ K exp
�
L
Z t

a
p ds

�
for t ∈ [a, b].

Generalized Gronwall lemma

ASSUME:

u : [a, b]→ [0,∞) is bounded on [a, b], K , L≥ 0,

h : [a, b]→ [0,∞) is nondecreasing and left-continuous on (a, b ],

u(t) ≤ K + L
Z t

a
u d h for t ∈ [a, b].

THEN: u(t) ≤ K exp
�
L [h(t)− h(a)]

�
for t ∈ [a, b].

Corollary

ASSUME: A∈BV ([a, b], Rn×n), f ∈G([a, b], Rn), det
�
I−∆−A(t)

�
6= 0 for t ∈ (a, b ] and

cA = sup{|[I−∆−A(t)]−1| : t ∈ [a, b)}.

THEN: 0 < cA <∞ and |x(t)| ≤ cA

�
|ex |+ 2 ‖f‖∞

�
exp(2 cA var t

a A) on [a, b]

holds for every solution x of the equation

x(t) = ex +

Z t

a
d A x + f (t)− f (a) , t ∈ [a, b] .



Gronwall lemma - sketch of proof

Assumptions

u : [a, b]→ [0,∞) is bounded on [a, b], K , L≥ 0,

h : [a, b]→ [0,∞) is nondecreasing and left-continuous on (a, b ],

u(t) ≤ K + L
Z t

a
u d h for t ∈ [a, b].

κ≥ 0 → wκ(t)= κ exp
�
L [h(t)− h(a)]

�
for t ∈ [a, b].Z t

a
wκ d h = κ

Z t

a
exp

�
L [h(s)− h(a)]

�
d h(s)]

= κ

Z t

a

� ∞X
k=0

Lk

k!

�
h(s)− h(a)]k

�
d h(s)] = κ

∞X
k=0

�Lk

k!

Z t

a

�
h(s)− h(a)

�k� d h(s)]

≤ κ
∞X

k=0

�Lk [h(t)− h(a)]k+1

(k + 1)!

�
=

κ

L

�
exp(L [h(t)− h(a)])− 1

�

=
wκ(t)−κ

L
for t ∈ [a, b].
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wherefrom, using Hake Theorem twice, one can deduce that vε < 0 on [a, b].

Therefore

u(t) < wκ(t)= K exp
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L (h(t)−h(a))

�
+ ε exp
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for t ∈ [a, b].

Since ε > 0 could be arbitrary, this proves Lemma. �
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k→∞

‖hk‖∞ = 0, lim
k→∞

ewk = 0.
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Continuity in weak topology of L([a, b], Rn)

Consider x ′k = Pk (t) xk , xk (a) = ex ,

x ′ = P(t) x , x(a) = ex ,

where Pk , P ∈ L([a, b],L(Rn)) for k ∈N.

Kurzweil & Vorel, 1957

ASSUME:

there is m ∈ L([a, b], R1) such that |Pk (t)| ≤ m(t) a.e. on [a, b] for k ∈N,Z t

a
Pk d s ⇒

Z t

a
P d s on [a, b].

THEN: xk ⇒ x on [a, b].

Ak (t) =

Z t

a
Pk d s, Ak (t) =

Z t

a
Pk d s.
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Continuity in weak topology of L([a, b], Rn)

Consider
xk (t) = exk +

Z t

a
d Ak xk ,

x(t) = ex +

Z t

a
d A x ,

Proposition

ASSUME:

sup
�

var b
a Ak : k ∈N

	
< ∞,

Ak ⇒ A.

THEN: xk ⇒ x on [a, b].

Ak (t) =

Z t

a
Pk d s, A(t) =

Z t

a
P d s,



Continuity in weak topology of L([a, b], Rn)

x ′k = Pk (t) xk , xk (a) = ex ,

x ′ = P(t) x , x(a) = ex ,

Opial, 1967

ASSUME:

‖Pk‖1 ≤ p∗ < ∞ pro all k ∈N,Z t

a
Pk d s ⇒

Z t

a
P d s,

THEN: xk ⇒ x on [a, b].

Zhang & Meng

Pk ⇀ P in L([a, b],L(Rn)) iff:

‖Pk‖1 ≤ p∗ <∞ pro all k ∈N and
Z t

a
Pk d s ⇒

Z t

a
P d s for t ∈ [a, b].

Opial ≈
h
Pk ⇀ P in L[a, b] ⇒ xk ⇒ x on [a, b]

i
.
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Potentials bounded with the weight

x ′k = Pk (t) xk , xk (a) = ex ,

x ′ = P(t) x , x(a) = ex .

Opial, 1967

ASSUME:

lim
k→∞

"Z t

a
Pk d s −

Z t

a
P d s


∞

�
1 + ‖Pk‖1

�#
= 0.

THEN: xk ⇒ x on [a, b].
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Variations bounded with the weight

xk (t) = exk +

Z t

a
d [Ak ] xk (s) + fk (t)− fk (a), t ∈ [a, b], (L-k)

x(t) = ex +

Z t

a
d [A] x(s) + f (t)− f (a), t ∈ [a, b]. (L)

Theorem (Monteiro & M.T.)

ASSUME: Ak ∈BV ([a, b], Rn×n), fk ∈G([a, b], Rn), exk ∈Rn for n∈N,

A∈BV ([a, b], Rn×n), f ∈BV ([a, b], Rn), ex ∈Rn,�
I−∆−A(t)]−1 ∈ L(X) for t ∈ (a, b],

lim
k→∞

�
1 + var b

a Ak
�
‖Ak −A‖∞ = 0,

lim
k→∞

�
1 + var b

a Ak

�
‖fk − f‖∞ = 0.

THEN : (L) has a unique solution x ∈BV ([a, b], Rn×n) on [a, b].

MOREOVER : (L-k) has a unique solution xk for k sufficiently large and xk ⇒ x .



Kiguradze lemma

Essential tool for the proof of the previous result is the Kiguradze lemma:

Kiguradze lemma

ASSUME:

A, Ak ∈ BV ([a, b], Rn×n) for k ∈N, ,

det [I−∆−A(t)] 6= 0 for t ∈ (a, b] ,

lim
k→∞

�
1 + varb

a Ak

�
‖Ak −A‖∞ = 0 .

THEN: there exist r∗ > 0 and k0 ∈N such that

‖x‖∞ ≤ r∗
 
|x(a)|+

�
1 + varb

a Ak
�

sup
t ∈ [a,b]

���x(t)− x(a)−
Z t

a
d Ak x

���!

for x ∈G([a, b], Rn) and k ≥ k0 .



Kiguradze lemma - sketch of proof

WE ASSUME: for each n∈N there are kn ∈N and yn ∈G([a, b], X) such that

‖yn‖∞ > n

 
‖yn(a)‖X +

�
1+ varb

a Akn

�
sup

t∈[a,b]

yn(t)−yn(a)−
Z t

a
d [Akn ] yn


X

!
.
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n
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�
1+ varb

a Ak
�

sup
t ∈ [a,b]

 yn(t)

‖yn‖∞
−

yn(a)

‖yn‖∞
−
Z t

a
d [Akn ]

yn

‖yn‖∞


X
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Sketch of proof of the Opial Type Theorem

‖Ak−A‖∞ ≤
�
1+ varb

a Ak
�
‖Ak−A‖∞→0 =⇒ Ak ⇒ A

=⇒ ∃ k1 ∈N : [I−∆−Ak (t)]−1 ∈L(X) on (a, b] for k ≥ k1

=⇒ solutions xk , x exist for all k ≥ k0.

Put uk = xk−x . Then uk (a)= exk − ex and

uk (t)− uk (a)−
Z t

a
d[Ak ] uk =

Z t

a
d [Ak−A] x +(fk (t)− f (t))− (fk (a)−f (a)) .

Kiguradze’s Lemma =⇒ ∃ k0 ≥ k1 and r∗ ∈ (0,∞) :

‖uk‖∞≤ r∗
 
‖uk (a)‖X +

�
1+ varb

a Ak

�
sup

t ∈ [a,b]

uk (t)− uk (a)−
Z t

a
d [Ak ] uk


X

!

≤ r∗
�
‖exk−ex‖X +

�
1+ varb

a Ak

��
2 ‖Ak−A‖∞ ‖x‖BV + 2 ‖fk−f‖∞

��
for k ≥ k0.

=⇒ uk ⇒ 0 =⇒ xk ⇒ x . �
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Remark

Main Theorem could be extended to the case f∈G([a, b], X) if the following convergence
assertion was true:

Let A, Ak ∈BV ([a, b],L(X)) for k ∈N and lim
k→∞

�
1+ varb

a Ak

�
‖Ak−A‖∞ = 0. Then

Z t

a
d [Ak ] f ⇒

Z t

a
d [A] f for each f ∈G([a, b], X) .

However, next example shows that this does not hold.
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Let a = 0, b = 1, X =R,

nk = [k 3/2] + 1, τm,k =
1

2 nk−m
if m∈{0, 1, . . . , nk} ,

a0,k =
2 nk

k
(−1) nk , b0,k =

1

k
(−1) nk−1,

am,k =
2 nk−m+1

k
(−1) nk−m, bm,k =

3

k
(−1) nk−m+1 if m∈{1, 2, . . . , nk−1}

Ak (t) =

(
0 if t ∈ [0, τ0,k ] ,

am,k t + bm,k if t ∈ [τm,k , τm+1,k ] and m∈{0, 1, . . . , nk−1} ,

A(t) = 0 for t ∈ [0, 1] .

Then

var1
0 Ak ≤

1

k
+

2 (nk−1)

k
≤

1

k
+ 2

√
k < ∞ ,�

1 + var1
0 Ak

�
‖Ak −A‖∞ ≤

�
1 +

2 nk−1

k

�
1

k
≤

1

k
+

2
√

k
+

1

k2

However, if

f (t) =

8<:
(−1)n

4
√

n
if t ∈ (2−n, 2−(n−1)] for some n∈N,

0 if t = 0 ,
(1)

then f is regulated, var1
0 f =∞ andZ 1

0
d[Ak ] f ≥

2

k

nk−1X
m=1

1
4
√

m
>

2

k

Z nk

1

1
4√t

d t =
8

3 k

�
4
q

(nk )3 − 1
�
, (2)

where the right hand side tends to ∞ for k →∞.



Example

xk (t) = ex +

Z t

0
d Ak xk , t ∈ [0, 1],

where

Ak (t)= P t + I

(
k t if 0≤ t ≤ 1/k ,

1 if 1
k ≤ t ≤ 1

)

⇒ A(t)= P t + I

(
0 if t = 0,

1 if t ∈ (0, 1]

)
locally on (0, 1], BUT NOT UNIFORMLY on [0, 1].

On the other hand, we have Ak ⇀∗ A in NBV [a, b] = (C[a, b])∗ and

xk (t)=

(
exp(P t + k I t)ex if 0 < t ≤ 1/k ,

exp(P t+I)ex if 1/k ≤ t ≤ 1

)
→ x0(t)=

( ex if t = 0,

exp(P t + I)ex if 0 < t ≤ 1

)
on [0, 1].

BUT, x0 cannot be a solution to x(t) = ex +

Z t

0
d A x on [0, 1] !!! as

∆+x0(0) = (exp(I)− I) ex 6= ex = ∆+x(0).

analog of Opial & Zhang & Meng result is not true pro GLDE’s
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∆+x0(0) = (exp(I)− I) ex 6= ex = ∆+x(0).

analog of Opial & Zhang & Meng result is not true pro GLDE’s
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Emphatic Convergence

xk (t) = exk +

Z t

a
d Ak x + fk (t)− fk (a), t ∈ [a, b] ,

x(t) = ex +

Z t

a
d A x + f (t)− f (a), t ∈ [a, b] .

A, Ak ∈BV ([a, b], Rn×n), f , fk ∈G([a, b], X) are left-continuous on (a, b]

Halas

LET:

sup
�

var b
a Ak : k ∈N

	
< ∞,

Ak ⇒ A, fk ⇒ f locally on (a, b] and exk → ex ,

∀ ε > 0 ∃ δ > 0 such that ∀ t ∈ (a, a + δ) ∃ k0 ∈N such that

|xk (a)− ex −∆+A(a) ex −∆+f (a)|< ε for all k ≥ k0.

THEN: xk → x on [a, b], while xk ⇒ x locally on (a, b].

LEMMA applies to the last EXAMPLE with

A(t) = P t + I and f (t) = (ey − ex) χ(0,1](t), where ey = exp(I) ex .
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Cauchy matrix

Assume:

det [I−∆−A(t)] 6= 0 and det [I +∆+A(s)] 6= 0 for t ∈ (a, b ], s∈ [a, b) .

Theorem

There is uniquely determined matrix valued function U : [a, b]× [a, b]→Rn×n such that

U(t , s) = I +

Z t

s
d [A(τ) ] U(τ, s) for t , s∈ [a, b].

Furthermore:

U(·, s)∈BV ([a, b], Rn×n) for every s∈ [a, b],

U(t , t)= I for every t ∈ [a, b],

U(t , s)−1 ∈Rn×n for every t , s∈ [a, b].

Corollary

Let: t0 ∈ [a, b] and ex ∈X . Then: x : [a, b]→X is a solution of

x(t)− ex − Z t

t0

d A x = 0 on [a, b]

iff x(t)= U(t , t0) ex for t ∈ [a, b].
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Variation-of-constants formula
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Z t
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det [I−∆−A(t)] 6= 0 and det [I + ∆+A(s)] 6= 0 for t ∈ (a, b ], s∈ [a, b)

and U is the Cauchy matrix function for (L).

THEN: (L) has for every ex ∈Rn and f ∈G([a, b], Rn) a unique solution x on [a, b].

This solution is given by

x(t) = U(t , t0) ex + f (t)− f (t0)−
Z t

t0

ds[U(t , s) ]
�
f (s)− f (t0)

�
for t ∈ [a, b] .
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8. MEASURE EQUATIONS



Second order measure equations

Let

A(t) =

 
0 P(t)

Q(t) 0

!
, f (t) =

 
g(t)

h(t)

!
and ex =

 eyez
!

,

where P, Q ∈ BV ([a, b], Rn×n), g, h ∈ BV ([a, b], Rn) and ey ,ez ∈ Rn.

Then
x(t) = ex +

Z t

a
d A x + f (t)− f (a)

reduces to

y(t) = ey +

Z t

a
d P z + g(t)− g(a),

z(t) = ez +

Z t

a
d Q y + h(t)− h(a)

and det [I −∆−A(t)] 6= 0 iff

det [I−∆−Q(t)∆−P(t)] 6= 0for t ∈ (a, b]

or

det [I−∆−P(t)∆−Q(t)] 6= 0for t ∈ (a, b]
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Second order measure equations

Consider systems
yk (t) = eyk +

Z t

a
d Pk zk + gk (t)− gk (a),

zk (t) = ezk +

Z t

a
d Qk yk + hk (t)− hk (a),

9>>=>>; (S-k)

y(t) = ey +

Z t

a
d P z + g(t)− g(a),

z(t) = ez +

Z t

a
d Q y + h(t)− h(a).

9>>=>>; (S)

Corollary

ASSUME: P, Q ∈ BV ([a, b], Rn×n), g, h ∈ BV ([a, b], Rn), ey ,ez ∈ Rn,

det [I−∆−Q(t) ∆−P(t)] 6= 0 or det [I−∆−P(t)∆−Q(t)] 6= 0 for t∈(a, b]),

lim
k→∞

‖eyk − ey‖Y = 0, lim
k→∞

‖ezk − ez‖Y = 0,

lim
k→∞

�
1 + varb

a Pk + varb
a Qk

��
‖Pk − P‖∞ + ‖Qk − Q‖∞

�
= 0,

lim
k→∞

�
1 + varb

a Pk + varb
a Qk

��
‖gk − g‖∞ + ‖hk − h‖∞

�
= 0.

THEN:

(S) has a unique solution (y , z)∈BV ([a, b], Rn)×BV ([a, b], Rn) on [a, b],

(S-k) has a unique solution (yk , zk )∈G([a, b], Rn)×G([a, b], Rn)) on [a, b] for k
sufficiently large,

lim
k→∞

‖yk − y‖∞ + ‖zk − z‖∞ = 0.
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Second order measure equations

Meng and Zhang :

d y• + d [µk (t)] y = 0, y(0) = ey , y•(0) = ez, k ∈ N , (mz-k)

where µk ∈ BV [a, b] are right-continuous, ey , ez ∈ R and y• is the generalized right-derivative
of y .

They proved that the weak* convergence µk → µ yields

yk ⇒ y , y•k → y• in weak* topology and y•k (1) → y•(1).

(S-k) reduce to (mz-k) when

n = 1, [a, b] = [0, 1], Pk (t)= t , Qk (t)= µk (t) and gk , hk are constant.

Similarly, (S) reduces to

d y• + d [µ(t)] y = 0, y(0) = ey , y•(0) = ez (mz)
if

P(t)= t , Q(t)= µ(t) and g, h are constant.

As existence conditions are obviously satisfied, by our Corollary we have

lim
k→∞

(‖yk − y‖∞ + ‖y•k − y•‖∞) = 0 whenever lim
k→∞

(1 + var1
0 µk ) ‖µk − µ‖∞ = 0.



9. TIME SCALES



Time scale calculus

Time scales : nonempty and closed subset T of R.

For a, b ∈ T, we set [a, b]T = [a, b] ∩ T.

σ(t) := inf
�
(t , b]∩T

�
is the forward jump operator ,

ρ(t) := sup
�
[a, t)∩T

�
is the backward jump operator

and

µ(t) = σ(t)− t is the graininess of the time scale.

For a given δ > 0, a division D ={α0, α1, . . . , αν(D)} ⊂ [a, b]T of [a, b] is said to be δ-fine if

either αi − αi−1 < δ or ρ(αi ) = αi−1.

We also say that P = (D, ξ) is a tagged division of [a, b]T if

ξ = {ξ1, . . . ξν(D)} and ξi ∈ [αi−1, αi ) ∩ T for i ∈ {1, . . . , ν(D)}.

Then

I =

Z b

a
f (t)∆ t

iff for every ε > 0 there is a δ > 0 such that

�� ν(D)X
i=1

f (ξi )(αi − αi−1)− I
�� < ε for all δ−fine tagged divisions P = (D, ξ) of [a, b]T .



Time scale calculus

Time scales : nonempty and closed subset T of R.

For a, b ∈ T, we set [a, b]T = [a, b] ∩ T.

σ(t) := inf
�
(t , b]∩T

�
is the forward jump operator ,

ρ(t) := sup
�
[a, t)∩T

�
is the backward jump operator

and

µ(t) = σ(t)− t is the graininess of the time scale.

For a given δ > 0, a division D ={α0, α1, . . . , αν(D)} ⊂ [a, b]T of [a, b] is said to be δ-fine if

either αi − αi−1 < δ or ρ(αi ) = αi−1.

We also say that P = (D, ξ) is a tagged division of [a, b]T if

ξ = {ξ1, . . . ξν(D)} and ξi ∈ [αi−1, αi ) ∩ T for i ∈ {1, . . . , ν(D)}.

Then

I =

Z b

a
f (t)∆ t

iff for every ε > 0 there is a δ > 0 such that

�� ν(D)X
i=1

f (ξi )(αi − αi−1)− I
�� < ε for all δ−fine tagged divisions P = (D, ξ) of [a, b]T .



Time scale calculus

Time scales : nonempty and closed subset T of R.

For a, b ∈ T, we set [a, b]T = [a, b] ∩ T.

σ(t) := inf
�
(t , b]∩T

�
is the forward jump operator ,

ρ(t) := sup
�
[a, t)∩T

�
is the backward jump operator

and

µ(t) = σ(t)− t is the graininess of the time scale.

For a given δ > 0, a division D ={α0, α1, . . . , αν(D)} ⊂ [a, b]T of [a, b] is said to be δ-fine if

either αi − αi−1 < δ or ρ(αi ) = αi−1.

We also say that P = (D, ξ) is a tagged division of [a, b]T if

ξ = {ξ1, . . . ξν(D)} and ξi ∈ [αi−1, αi ) ∩ T for i ∈ {1, . . . , ν(D)}.

Then

I =

Z b

a
f (t)∆ t

iff for every ε > 0 there is a δ > 0 such that

�� ν(D)X
i=1

f (ξi )(αi − αi−1)− I
�� < ε for all δ−fine tagged divisions P = (D, ξ) of [a, b]T .



Time scale calculus

Time scales : nonempty and closed subset T of R.

For a, b ∈ T, we set [a, b]T = [a, b] ∩ T.

σ(t) := inf
�
(t , b]∩T

�
is the forward jump operator ,

ρ(t) := sup
�
[a, t)∩T

�
is the backward jump operator

and

µ(t) = σ(t)− t is the graininess of the time scale.

For a given δ > 0, a division D ={α0, α1, . . . , αν(D)} ⊂ [a, b]T of [a, b] is said to be δ-fine if

either αi − αi−1 < δ or ρ(αi ) = αi−1.

We also say that P = (D, ξ) is a tagged division of [a, b]T if

ξ = {ξ1, . . . ξν(D)} and ξi ∈ [αi−1, αi ) ∩ T for i ∈ {1, . . . , ν(D)}.

Then

I =

Z b

a
f (t)∆ t

iff for every ε > 0 there is a δ > 0 such that

�� ν(D)X
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Linear dynamical equations on time scales

Put eσ(t) := inf
�
[t , b]∩T

�

(recall: σ(t) := inf
�
(t , b]∩T

�
).

Proposition (Slavík)

ASSUME: f : [a, b]T → Rn is rd-continuous,

F1(t)=

Z t

a
f (s)∆s and F2(t)=

Z t

a
f (eσ(s)) d[eσ(s)] for t ∈ [a, b].

THEN: F2 = F1 ◦ eσ.

Consider equation

y(t) = ey+

Z t

a

�
P(s) y(s)+ h(s)

�
∆s , t ∈ [a, b]T , (D)

where P : [a, b]T→L(Rn) and h : [a, b]T → Rn are rd-continuous on [a, b]T , and put

A(t) =

Z t

a
P(eσ(s)) d [eσ(s)] a f (t) =

Z t

a
h(eσ(s)) d [eσ(s)] for t ∈ [a, b] .

Theorem (Slavík)

If y : [a, b]T →Rn is a solution of (LD), then x = y ◦ eσ is a solution of

x(t) = ey+

Z t

a
d A x + f (t)− f (a) , t ∈ [a, b] .

(L)

If x is a solution of (GL) and y = x |T , then y is a solution of (LD).
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Linear dynamical equations on time scales

y(t) = ey +

Z t

a

�
P(s) y(s)+ h(s)

�
∆s , t ∈ [a, b]T , (LD)

y(t) = eyk +

Z t

a

�
Pk (s) y(s)+ hk (s)

�
∆s , t ∈ [a, b]T , (LD-k)

Corollary

ASSUME: P, Pk : [a, b]T → L(Rn), h, hk : [a, b]T →Rn for k ∈N are rd-continuous in [a, b]T ,

αk = sup
t∈[a,b]T

‖Pk (t)‖L(Rn) + sup
t∈[a,b]T

‖hk (t)‖Rn for k ∈N ,

lim
k→∞

‖eyk − ey‖Rn = 0 ,

lim
k→∞

sup
t∈[a,b]T

Z t

a
(Pk (s)− P(s))∆s


L(Rn)

�
1 + αk

�
= 0 ,

lim
k→∞

sup
t∈[a,b]T

Z t

a
(hk (s)− h(s)) ∆s


L(Rn)

�
1 + αk

�
= 0 .

THEN: (LD) has a solution y , (LD-k) has a solution yk for k ∈N sufficiently large and

lim
k→∞

sup
t∈[a,b]T

‖yk (t)− y(t)‖Rn = 0 .
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